Connect with us

Tech

A third of the world’s population lacks internet connectivity − airborne communications stations could change that

Published

on

Internet Connectivity
An experimental aircraft like this solar-powered airship could someday play a role in providing internet access to rural areas or disaster zones. Thales Alenia Space via Wikimedia Commons, CC BY-SA

Mohamed-Slim Alouini, King Abdullah University of Science and Technology and Mariette DiChristina, Boston University

About one-third of the global population, around 3 billion people, don’t have access to the internet or have poor connections because of infrastructure limitations, economic disparities and geographic isolation.

Today’s satellites and ground-based networks leave communications gaps where, because of geography, setting up traditional ground-based communications equipment would be too expensive.

High-altitude platform stations – telecommunications equipment positioned high in the air, on uncrewed balloons, airships, gliders and airplanes – could increase social and economic equality by filling internet connectivity gaps in ground and satellite coverage. This could allow more people to participate fully in the digital age.

One of us, Mohamed-Slim Alouini, is an electrical engineer who contributed to an experiment that showed it is possible to provide high data rates and ubiquitous 5G coverage from the stratosphere. The stratosphere is the second lowest layer of the atmosphere, ranging from 4 to 30 miles above the Earth. Commercial planes usually fly in the lower part of the stratosphere. The experiment measured signals between platform stations and users on the ground in three scenarios: a person staying in one place, a person driving a car and a person operating a boat.

My colleagues measured how strong the signal is in relation to interference and background noise levels. This is one of the measures of network reliability. The results showed that the platform stations can support high-data-rate applications such as streaming 4K resolution videos and can cover 15 to 20 times the area of standard terrestrial towers.

Early attempts by Facebook and Google to commercially deploy platform stations were unsuccessful. But recent investments, technological improvements and interest from traditional aviation companies and specialized aerospace startups may change the equation.

The goal is global connectivity, a cause that brought the platform stations idea recognition in the World Economic Forum’s 2024 Top 10 Emerging Technologies report. The international industry initiative HAPS Alliance, which includes academic partners, is also pushing toward that goal.

Fast, cost effective, flexible

Platform stations would be faster, more cost effective and more flexible than satellite-based systems.

Because they keep communications equipment closer to Earth than satellites, the stations could offer stronger, higher-capacity signals. This would enable real-time communications speedy enough to communicate with standard smartphones, high-resolution capabilities for imaging tasks and greater sensitivity for sensing applications. They transmit data via free-space optics, or light beams, and large-scale antenna array systems, which can send large amounts of data quickly.

Satellites can be vulnerable to eavesdropping or jamming when their orbits bring them over adversarial countries. But platform stations remain within the airspace of a single country, which reduces that risk.

Advertisement
Get More From A Face Cleanser And Spa-like Massage

High-altitude platform stations are also easier to put in place than satellites, which have high launch and maintenance costs. And the regulatory requirements and compliance procedures required to secure spots in the stratosphere are likely to be simpler than the complex international laws governing satellite orbits. Platform stations are also easier to upgrade, so improvements could be deployed more quickly.

Platform stations are also potentially less polluting than satellite mega-constellations because satellites burn up upon reentry and can release harmful metals into the atmosphere, while platform stations can be powered by clean energy sources such as solar and green hydrogen.

The key challenges to practical platform stations are increasing the amount of time they can stay aloft to months at a time, boosting green onboard power and improving reliability – especially during automated takeoff and landing through the lower turbulent layers of the atmosphere.

Diagram showing a rural area with a river running through it and airships providing communications lines. Circular insets show a mobile user, internet of things devices and satellite.
A network of interconnected high-altitude platform stations could connect mobile users and Internet of Things devices in rural areas.

Beyond satellites

Platform stations could play a critical role in emergency and humanitarian situations by supporting relief efforts when ground-based networks are damaged or inoperative.

The stations could also connect Internet of Things (IoT) devices and sensors in remote settings to better monitor the environment and manage resources.

In agriculture, the stations could use imaging and sensing technologies to help farmers monitor crop health, soil conditions and water resources.

Their capability for high-resolution imaging could also support navigation and mapping activities crucial for cartography, urban planning and disaster response.

The stations could also do double duty by carrying instruments for atmospheric monitoring, climate studies and remote sensing of Earth’s surface features, vegetation and oceans.

From balloons to airplanes

Platform stations could be based on different types of aircraft.

Balloons offer stable, long-duration operation at high altitudes and can be tethered or free-floating. Airships, also known as dirigibles or blimps, use lighter-than-air gases and are larger and more maneuverable than balloons. They’re especially well suited for surveillance, communications and research.

Gliders and powered aircraft can be controlled more precisely than balloons, which are sensitive to variations in wind speed. In addition, powered aircraft, which include drones and fixed-wing airplanes, can provide electricity to communication equipment, sensors and cameras.

Advertisement
Get More From A Face Cleanser And Spa-like Massage

Next-generation power

Platform stations could make use of diverse power sources, including increasingly lightweight and efficient solar cells, high-energy-density batteries, green hydrogen internal combustion engines, green hydrogen fuel cells, which are now at the testing stage, and eventually, laser beam powering from ground- or space-based solar stations.

The evolution of lightweight aircraft designs coupled with advancements in high-efficiency motors and propellers enable planes to fly longer and carry heavier payloads. These cutting-edge lightweight planes could lead to platform stations capable of maneuvering in the stratosphere for extended periods.

Meanwhile, improvements in stratospheric weather models and atmospheric models make it easier to predict and simulate the conditions under which the platform stations would operate.

Bridging the global digital divide

Commerical deployment of platform stations, at least for post-disaster or emergency situations, could be in place by the end of the decade. For instance, a consortium in Japan, a country with remote mountainous and island communities, has earmarked US$100 million for solar-powered, high-altitude platform stations.

Platform stations could bridge the digital divide by increasing access to critical services such as education and health care, providing new economic opportunities and improving emergency response and environmental monitoring. As advances in technology continue to drive their evolution, platform stations are set to play a crucial role in a more inclusive and resilient digital future.

Mohamed-Slim Alouini, Distinguished Professor of Electrical and Computer Engineering, King Abdullah University of Science and Technology and Mariette DiChristina, Dean and Professor of the Practice in Journalism, College of Communication, Boston University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

STM Daily News is a vibrant news blog dedicated to sharing the brighter side of human experiences. Emphasizing positive, uplifting stories, the site focuses on delivering inspiring, informative, and well-researched content. With a commitment to accurate, fair, and responsible journalism, STM Daily News aims to foster a community of readers passionate about positive change and engaged in meaningful conversations. Join the movement and explore stories that celebrate the positive impacts shaping our world.

https://stmdailynews.com/

Author

Advertisement
Get More From A Face Cleanser And Spa-like Massage

Discover more from Daily News

Subscribe to get the latest posts sent to your email.

Continue Reading
Advertisement Sports Research

Automotive

CVT Transmissions Explained: Model Years to Avoid, Reliability Issues, and Maintenance Tips

Learn what a CVT transmission is, which model years to avoid, brands with reliability issues, and expert tips to extend CVT lifespan.

Published

on

CVT transmission diagram showing belt and pulley system used in modern fuel-efficient vehicles

View from the driver’s seat of the gear shift lever in a car with an automatic transmission and climate control panel. Black-gray car interior

CVT Transmissions Explained: Model Years to Avoid, Reliability Issues, and Maintenance Tips

Continuously Variable Transmissions — better known as CVTs — are now common in compact cars, hybrids, and fuel-efficient vehicles. They promise smoother driving and better gas mileage, but their reputation has been uneven, depending heavily on brand, design, and model year.

Here’s what CVTs are, which vehicles have had the most trouble, and how owners can protect themselves from costly repairs.


What Is a CVT?

A CVT (Continuously Variable Transmission) doesn’t use traditional fixed gears like a 6-speed or 8-speed automatic. Instead, it relies on two variable-diameter pulleys connected by a steel belt or chain. As the pulleys change size, the transmission seamlessly adjusts the gear ratio.

  • Smooth acceleration
  • No noticeable gear shifts
  • Improved fuel efficiency

This design is why CVTs are especially common in hybrids, where efficiency and smooth power delivery matter more than outright performance.

img 2149

Illustration credit: Samarins.com


Why CVTs Are Popular in Hybrids

Most hybrid systems use a variation called an eCVT, which is mechanically different — and generally more reliable — than belt-driven CVTs found in many gas-only cars.

Manufacturers like Toyota and Honda favor eCVTs because they:

  • Reduce mechanical complexity
  • Eliminate traditional belts under high stress
  • Integrate seamlessly with electric motors
  • Deliver long-term durability with minimal maintenance

This is why hybrid CVTs tend to have far fewer failure complaints than early gasoline-only CVTs.


CVT Model Years to Avoid (Buyer Beware)

Not all CVTs are created equal. Some manufacturers — most notably Nissan — experienced widespread issues during certain production years.

Nissan CVT Model Years With Higher Failure Rates

  • Nissan Altima: 2007–2012, 2013–2018
  • Nissan Sentra: 2012–2017
  • Nissan Rogue: 2014–2018
  • Nissan Pathfinder: 2013–2014

Common issues reported included:

  • Shuddering and hesitation
  • Overheating
  • Whining noises
  • Premature belt or pulley failure
  • Complete transmission replacement well before 100,000 miles

These problems were serious enough to result in extended warranties and class-action settlements in some cases. Newer Nissan CVTs (2019 and newer) show improvement, but long-term reliability data is still developing.


How Other Brands Compare

  • Toyota & Honda: Generally strong CVT reliability, especially in hybrids
  • Subaru: Mixed results; early Lineartronic CVTs had complaints, later versions improved
  • Mitsubishi: Some issues in budget models, fewer reports overall than Nissan

In short, design, torque limits, and cooling systems matter more than the CVT label alone.


How to Extend the Life of a CVT

Despite the myth of “lifetime fluid,” most transmission specialists agree that maintenance is critical.

  • Change CVT fluid every 30,000–50,000 miles
  • Use only manufacturer-specified CVT fluid
  • Avoid aggressive acceleration and heavy towing
  • Watch for early warning signs like whining, slipping, or shuddering
  • Keep the vehicle’s cooling system in good condition
  • Verify service records before buying a used CVT vehicle

Neglecting fluid service is one of the fastest ways to shorten a CVT’s lifespan.


CVT vs Dual-Clutch Transmission

Feature CVT Dual-Clutch (DCT) Gear changes Continuous Fixed gears Driving feel Smooth, no shifts Fast, sporty shifts Fuel economy Often better Good, performance-focused Reliability Varies by brand/year Can be complex or jerky


Final Takeaway

CVTs aren’t inherently bad — but early designs and poor maintenance gave some brands a lasting reputation problem. Buyers should focus on:

  • Specific model years
  • Service history
  • Driving habits
  • Whether the CVT is a traditional belt-driven unit or a hybrid eCVT

When properly designed and maintained, a CVT can deliver excellent efficiency and long service life — especially in modern hybrids.

According to Consumer Reports reliability data , CVT performance varies significantly by manufacturer and model year.

Drivers can also research real-world issues through the NHTSA vehicle complaint database , which tracks owner-reported transmission problems.

For more automotive explainers, visit our The Knowledge section on STM Daily News.

Advertisement
Get More From A Face Cleanser And Spa-like Massage

Authors

  • Rod Washington

    Rod: A creative force, blending words, images, and flavors. Blogger, writer, filmmaker, and photographer. Cooking enthusiast with a sci-fi vision. Passionate about his upcoming series and dedicated to TNC Network. Partnered with Rebecca Washington for a shared journey of love and art. View all posts

  • IMG 0366

    Hal Machina is a passionate writer, blogger, and self-proclaimed journalist who explores the intersection of science, tech, and futurism. Join him on a journey into innovative ideas and groundbreaking discoveries! View all posts journalist


Discover more from Daily News

Subscribe to get the latest posts sent to your email.

Continue Reading

News

Girls and boys solve math problems differently – with similar short-term results but different long-term outcomes

Girls and Boys: New research finds girls and women more often use step-by-step algorithms, while boys and men use shortcuts. Accuracy is similar short-term, but algorithm use links to weaker performance on complex problems and may help explain gaps on high-stakes tests and in math-intensive careers.

Published

on

file 20251104 56 f7pa3s.jpg?ixlib=rb 4.1
Math teachers have to accommodate high school students’ different approaches to problem-solving. RJ Sangosti/MediaNews Group/The Denver Post via Getty Images

Girls and boys solve math problems differently – with similar short-term results but different long-term outcomes

Sarah Lubienski, Indiana University; Colleen Ganley, Florida State University, and Martha Makowski, University of Alabama Among high school students and adults, girls and women are much more likely to use traditional, step-by-step algorithms to solve basic math problems – such as lining up numbers to add, starting with the ones place, and “carrying over” a number when needed. Boys and men are more likely to use alternative shortcuts, such as rounding both numbers, adding the rounded figures, and then adjusting to remove the rounding. But those who use traditional methods on basic problems are less likely to solve more complex math problems correctly. These are the main findings of two studies our research team published in November 2025. This new evidence may help explain an apparent contradiction in the existing research – girls do better at math in school, but boys do better on high-stakes math tests and are more likely to pursue math-intensive careers. Our research focuses not just on getting correct answers, but on the methods students use to arrive at them. We find that boys and girls approach math problems differently, in ways that persist into adulthood.

A possible paradox

In a 2016 study of U.S. elementary students, boys outnumbered girls 4 to 1 among the top 1% of scorers on a national math test. And over many decades, boys have been about twice as likely as girls to be among the top scorers on the SAT and AP math exams. However, girls tend to be more diligent in elementary school and get better grades in math class throughout their schooling. And girls and boys across the grades tend to score similarly on state math tests, which tend to be more aligned with the school curriculum and have more familiar problems than the SAT or other national tests. Beyond grades and test scores, the skills and confidence acquired in school carry far beyond, into the workforce. In lucrative STEM occupations, such as computer science and engineering, men outnumber women 3 to 1. Researchers have considered several explanations for this disparity, including differences in math confidence and occupational values, such as prioritizing helping others or making money. Our study suggests an additional factor to consider: gender differences in approaches to math problems. When older adults think of math, they may recall memorizing times tables or doing the tedious, long-division algorithm. Memorization and rule-following can pay off on math tests focused on procedures taught in school. But rule-following has its limits and seems to provide more payoff among low-achieving than high-achieving students in classrooms. More advanced math involves solving new, perplexing problems rather than following rules.
A teacher shows students a math lesson.
Math can be creative, not rote. AP Photo/Jacquelyn Martin

Differing strategies

In looking at earlier studies of young children, our research team was struck by findings that young boys use more inventive strategies on computation problems, whereas girls more often use standard algorithms or counting. We wondered whether these differences disappear after elementary school, or whether they persist and relate to gender disparities in more advanced math outcomes. In an earlier study, we surveyed students from two high schools with different demographic characteristics to see whether they were what we called bold problem-solvers. We asked them to rate how much they agreed or disagreed with specific statements, such as “I like to think outside the box when I solve math problems.” Boys reported bolder problem-solving tendencies than girls did. Importantly, students who reported bolder problem-solving tendencies scored higher on a math problem-solving test we administered. Our newer studies echo those earlier results but reveal more specifics about how boys and girls, and men and women, approach basic math problems.

Algorithms and teacher-pleasing

In the first study, we gave three questions to more than 200 high school students: “25 x 9 = ___,” “600 – 498 = ___,” and “19 + 47 + 31 = ___.” Each question could be solved with a traditional algorithm or with a mental shortcut, such as solving 25 x 9 by first multiplying 25 x 8 to get 200 and then adding the final 25 to get 225. Regardless of their gender, students were equally likely to solve these basic computation items correctly. But there was a striking gender difference in how they arrived at that answer. Girls were almost three times as likely as boys – 52% versus 18% – to use a standard algorithm on all three items. Boys were far more likely than girls – 51% versus 15% – to never use an algorithm on the questions. We suspected that girls’ tendency to use algorithms might stem from greater social pressure toward compliance, including complying with traditional teacher expectations. So, we also asked all the students eight questions to probe how much they try to please their teachers. We also wanted to see whether algorithm use might relate to gender differences in more advanced problem-solving, so we gave students several complex math problems from national tests, including the SAT. As we suspected, we found that girls were more likely to report a desire to please teachers, such as by completing work as directed. Those who said they did have that desire used the standard algorithm more often. Also, the boys in our sample scored higher than the girls on the complex math problems. Importantly, even though students who used algorithms on the basic computation items were just as likely to compute these items correctly, algorithm users did worse on the more complex math problems.

Continuing into adulthood

In our second study, we gave 810 adults just one problem: “125 + 238 = ___.” We asked them to add mentally, which we expected would discourage them from using an algorithm. Again, there was no gender difference in answering correctly. But 69% of women, compared to 46% of men, reported using the standard algorithm for their mental calculation, rather than using another strategy entirely. We also gave the adults a more advanced problem-solving test, this time focused on probability-related reasoning, such as the chances that rolling a seven-sided die would result in an even number. Similar to our first study, women and those who used the standard algorithm on the computation problem performed worse on the reasoning test.

The importance of inventiveness

We identified some factors that may play a role in these gender differences, including spatial-thinking skills, which may help people develop alternate calculation approaches. Anxiety about taking tests and perfectionism, both more prevalent among women, may also be a factor. We are also interested in the power of gender-specific social pressures on girls. National data has shown that young girls exhibit more studious behavior than do boys. And the high school girls we studied were more likely than boys to report they made a specific effort to meet teachers’ expectations. More research definitely is needed to better understand this dynamic, but we hypothesize that the expectation some girls feel to be compliant and please others may drive teacher-pleasing tendencies that result in girls using algorithms more frequently than boys, who are more socialized to be risk-takers. While compliant behavior and standard math methods often lead to correct answers and good grades in school, we believe schools should prepare all students – regardless of gender – for when they face unfamiliar problems that require inventive problem-solving skills, whether in daily life, on high-stakes tests or in math-intensive professions.The Conversation Sarah Lubienski, Professor of Mathematics Education, Indiana University; Colleen Ganley, Professor of Developmental Psychology, Florida State University, and Martha Makowski, Assistant Professor of Mathematics, University of Alabama This article is republished from The Conversation under a Creative Commons license. Read the original article.
Hollywood vs. Reality: How LA’s Wilshire Subway Was Really Built
Link: https://stmdailynews.com/wilshire-subway-tunneling-hollywood-vs-reality/

Author


Discover more from Daily News

Subscribe to get the latest posts sent to your email.

Continue Reading

Tech

When ‘Head in the Clouds’ Means Staying Ahead

Head in the Clouds: Cloud is no longer just storage—it’s the intelligent core of modern business. Explore how “cognitive cloud” blends AI and cloud infrastructure to enable real-time, self-optimizing operations, improve customer experiences, and accelerate enterprise modernization.

Published

on

Head in the Clouds: Cloud is no longer just storage—it’s the intelligent core of modern business. Explore how “cognitive cloud” blends AI and cloud infrastructure to enable real-time, self-optimizing operations, improve customer experiences, and accelerate enterprise modernization.

When ‘Head in the Clouds’ Means Staying Ahead

(Family Features) You approve a mortgage in minutes, your medical claim is processed without a phone call and an order that left the warehouse this morning lands at your door by dinner. These moments define the rhythm of an economy powered by intelligent cloud infrastructure. Once seen as remote storage, the cloud has become the operational core where data, AI models and autonomous systems converge to make business faster, safer and more human. In this new reality, the smartest companies aren’t looking up to the cloud; they’re operating within it. Public cloud spending is projected to reach $723 billion in 2025, according to Gartner research,  reflecting a 21% increase year over year. At the same time, 90% of organizations are expected to adopt hybrid cloud by 2027. As cloud becomes the universal infrastructure for enterprise operations, the systems being built today aren’t just hosted in the cloud, they’re learning from it and adapting to it. Any cloud strategy that doesn’t account for AI workloads as native risks falling behind, holding the business back from delivering the experiences consumers rely on every day. After more than a decade of experimentation, most enterprises are still only partway up the curve. Based on Cognizant’s experience, roughly 1 in 5 enterprise workloads has moved to the cloud, while many of the most critical, including core banking, health care claims and enterprise resource planning, remain tied to legacy systems. These older environments were never designed for the scale or intelligence the modern economy demands. The next wave of progress – AI-driven products, predictive operations and autonomous decision-making – depends on cloud architectures designed to support intelligence natively. This means cloud and AI will advance together or not at all.

The Cognitive Cloud: Cloud and AI as One System

For years, many organizations treated migration as a finish line. Applications were lifted and shifted into the cloud with little redesign, trading one set of constraints for another. The result, in many cases, has been higher costs, fragmented data and limited room for innovation. “Cognitive cloud” represents a new phase of evolution. Imagine every process, from customer service to supply-chain management, powered by AI models that learn, reason and act within secure cloud environments. These systems store and interpret data, detect patterns, anticipate demand and automate decisions at a scale humans simply cannot match. In this architecture, AI and cloud operate in concert. The cloud provides computing power, scale and governance while AI adds autonomy, context and insight. Together, they form an integrated platform where cloud foundations and AI intelligence combine to enable collaboration between people and systems. This marks the rise of the responsive enterprise; one that senses change, adjusts instantly and builds trust through reliability. Cognitive cloud platforms combine data fabric, observability, FinOps and SecOps into an intelligent core that regulates itself in real time. The result is invisible to consumers but felt in every interaction: fewer errors, faster responses and consistent experiences.

Consumer Impact is Growing

The impact of cognitive cloud is already visible. In health care, 65% of U.S. insurance claims run through modernized, cloud-enabled platforms designed to reduce errors and speed up reimbursement. In the life sciences industry, a pharmaceuticals and diagnostics firm used cloud-native automation to increase clinical trial investigations by 20%, helping get treatments to patients sooner. In food service, intelligent cloud systems have reduced peak staffing needs by 35%, in part through real-time demand forecasting and automated kitchen operation. In insurance, modernization has produced multi-million-dollar savings and faster policy issuance, improving both customer experience and financial performance. Beneath these outcomes is the same principle: architecture that learns and responds in real time. AI-driven cloud systems process vast volumes of data, identify patterns as they emerge and automate routines so people can focus on innovation, care and service. For businesses, this means fewer bottlenecks and more predictive operations. For consumers, it means smarter, faster, more reliable services, quietly shaping everyday life. While cloud engineering and AI disciplines remain distinct, their outcomes are increasingly intertwined. The most advanced architectures now treat intelligence and infrastructure as complementary forces, each amplifying the other.

Looking Ahead

This transformation is already underway. Self-correcting systems predict disruptions before they happen, AI models adapt to market shifts in real time and operations learn from every transaction. The organizations mastering this convergence are quietly redefining themselves and the competitive landscape. Cloud and AI have become interdependent priorities within a shared ecosystem that moves data, decisions and experiences at the speed customers expect. Companies that modernize around this reality and treat intelligence as infrastructure will likely be empowered to reinvent continuously. Those that don’t may spend more time maintaining the systems of yesterday than building the businesses of tomorrow. Learn more at cognizant.com.   Photo courtesy of Shutterstock collect?v=1&tid=UA 482330 7&cid=1955551e 1975 5e52 0cdb 8516071094cd&sc=start&t=pageview&dl=http%3A%2F%2Ftrack.familyfeatures SOURCE: Cognizant
Culver’s Thank You Farmers® Project Hits $8 Million Donation Milestone
Link: https://stmdailynews.com/culvers-thank-you-farmers-project-hits-8-million-donation-milestone/

Author


Discover more from Daily News

Subscribe to get the latest posts sent to your email.

Continue Reading

Trending