NASA’s Perseverance rover deposited the first of several samples onto the Martian surface on Dec. 21, 2022, the 653rd Martian day, or sol, of the mission. Credits: NASA/JPL-Caltech/MSSS
NASA announced Thursday its new Mars Sample Receiving Project office, responsible for receiving and curating the first samples returned from the Red Planet, will be located at the agency’s Johnson Space Center in Houston. The safe and rapid release of Mars samples after they return to Earth to laboratories worldwide for science investigations will be a priority.
“NASA Johnson houses the largest and most diverse collection of astromaterials in the world, beginning with samples returned from the Apollo Program,” said Johnson Center Director Vanessa Wyche. “With our expertise, we look forward to managing the project that will receive scientifically compelling Mars samples gathered by the NASA Perseverance rover.”
Johnson will work with the agency’s Mars Exploration Program to develop and design plans for sample recovery and subsequent transition to science investigations. The project team will recover, contain, transfer, assess safety, curate, and coordinate scientific investigation of the samples collected by NASA’s Mars 2020 Perseverance rover, which are expected to arrive on Earth in 2033.
Samples returned to Earth will enhance humanity’s understanding of Mars through detailed chemical and physical analyses in laboratories around the world that are beyond the capabilities of instruments delivered to Mars. Perseverance is gathering samples in and around Jezero Crater, where billions of years ago, a river once flowed into a lake and deposited rocks and sediments in a fan shaped delta formation. Deltas are one of the best places on Mars to search for potential signs of ancient microbial life.
“Age-old samples, like those being collected on Mars, are critical in our quest to better understand our universe,” said Rep. Brian Babin of Texas. “I’m proud Johnson will lead NASA’s effort in curating these samples and play a key role in propelling our scientific discoveries forward.”
A key objective for Perseverance’s mission on Mars is astrobiology, including caching samples that may contain signs of ancient microbial life. The rover is currently characterizing the planet’s geology and past climate, paving the way for human exploration of the Red Planet, and is the first mission to collect and cache Martian rock and regolith.
“The Mars Sample Return Program is essential for the human exploration of Mars,” said Rep. Sheila Jackson Lee of Texas. “Establishing this Sample Receiving Project office is a large step forward in helping us gain knowledge and make progress in our efforts to go to Mars.”
Advertisement
“Johnson will work with the agency’s Mars Exploration Program and ESA to complete studies and develop plans for sample recovery and transportation, facility development and operation, and science investigations,” says Gerhard Kminek, ESA’s MSR lead scientist.
More Campaign Information
Returning samples to Earth from Mars is expected to be the most complex robotic space flight campaign ever attempted. The NASA-European Space Agency (ESA) Mars Sample Return Campaign promises to revolutionize humanity’s understanding of Mars by bringing scientifically selected samples to Earth for study using the most sophisticated instruments around the world. The campaign would fulfill a solar system exploration goal, a high priority since the 1970s and in the last three National Academy of Sciences Planetary Decadal Surveys.
This strategic NASA and ESA partnership would be the first mission to return scientifically selected samples from another planet and the first launch from the surface of another planet. The samples collected by NASA’s Perseverance Mars rover during its exploration of an ancient lakebed are thought to present the best opportunity to reveal clues about the early evolution of Mars, including the potential for past life. By better understanding the history of Mars, we would improve our understanding of all rocky planets in the solar system, including Earth.
For more information about the Mars Sample Return campaign, visit:
As summer approaches, Arizonans are bracing for yet another season of intense heat and unpredictable weather. According to forecasts from NOAA, AccuWeather, and the Old Farmer’s Almanac, summer2025 is shaping up to include above-average temperatures, sporadic monsoon activity, and potential drought conditions.
Above-Average Heat ExpectedNOAA predicts that Arizona will experience higher-than-average temperatures, continuing the warming trend of recent years. Phoenix and other urban areas may see extended stretches of triple-digit heat, making heat safety a top priority for residents.###
Monsoon Outlook AccuWeather forecasts a slightly below-average monsoon season. While Arizona relies on these summer storms for essential rainfall, experts warn of fewer storms, with flash flooding still possible in localized areas. Homeowners should prepare for potential microbursts and dust storms, especially in July and August. ###
Drought Concerns PersistThe Old Farmer’s Almanac suggests that while some areas might see sporadic relief, drought conditions will likely persist across much of the state. Water conservation efforts remain crucial as reservoirs and aquifers continue to face stress.###
Practical Tips for Staying Safe.
Hydration and Cooling: Always carry water and plan outdoor activities during early morning or evening hours.2.
Monsoon Prep: Secure outdoor furniture and prepare an emergency kit for storm-related power outages.3.
Advertisement
Conservation Efforts: Reduce water usage by fixing leaks, using drought-resistant landscaping, and being mindful of daily consumption.###
Looking AheadArizona’s summer 2025 will challenge both residents and visitors with its heat and sporadic weather patterns. Staying informed and proactive can make all the difference in navigating the season safely.What are your favorite ways to beat the Arizona heat? Share your tips in the comments below!
Let me help you enhance the article with proper attribution and related links. First, I’ll search for the NOAA website.
Let me help you enhance the article with proper attribution and related links:
What Will Summer 2025 Be Like in Arizona? Here’s What the Experts Predict
Originally published by AZ Central on May 12, 2025
STM Daily News is a vibrant news blog dedicated to sharing the brighter side of human experiences. Emphasizing positive, uplifting stories, the site focuses on delivering inspiring, informative, and well-researched content. With a commitment to accurate, fair, and responsible journalism, STM Daily News aims to foster a community of readers passionate about positive change and engaged in meaningful conversations. Join the movement and explore stories that celebrate the positive impacts shaping our world.
‘Extraordinary claims require extraordinary evidence’ − an astronomer explains how much evidence scientists need to claim discoveries like extraterrestrial life
The universe is filled with countless galaxies, stars and planets. Astronomers may find life one day, but they will need extraordinary proof.
ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre (CEA Paris-Saclay), G. Anselmi Chris Impey, University of Arizona
The detection of life beyond Earth would be one of the most profound discoveries in the history of science. The Milky Way galaxy alone hosts hundreds of millions of potentially habitable planets. Astronomers are using powerful space telescopes to look for molecular indicators of biology in the atmospheres of the most Earth-like of these planets.
But so far, no solid evidence of life has ever been found beyond the Earth. A paper published in April 2025 claimed to detect a signature of life in the atmosphere of the planet K2-18b. And while this discovery is intriguing, most astronomers – including the paper’s authors – aren’t ready to claim that it means extraterrestrial life exists. A detection of life would be a remarkable development.
The astronomer Carl Sagan used the phrase, “Extraordinary claims require extraordinary evidence,” in regard to searching for alien life. It conveys the idea that there should be a high bar for evidence to support a remarkable claim.
I’m an astronomer who has written a book about astrobiology. Over my career, I’ve seen some compelling scientific discoveries. But to reach this threshold of finding life beyond Earth, a result needs to fit several important criteria.
When is a result important and reliable?
There are three criteria for a scientific result to represent a true discovery and not be subject to uncertainty and doubt. How does the claim of life on K2-18b measure up?
First, the experiment needs to measure a meaningful and important quantity. Researchers observed K2-18b’s atmosphere with the James Webb Space Telescope and saw a spectral feature that they identified as dimethyl sulfide.
On Earth, dimethyl sulfide is associated with biology, in particular bacteria and plankton in the oceans. However, it can also arise by other means, so this single molecule is not conclusive proof of life.
Second, the detection needs to be strong. Every detector has some noise from the random motion of electrons. The signal should be strong enough to have a low probability of arising by chance from this noise.
The K2-18b detection has a significance of 3-sigma, which means it has a 0.3% probability of arising by chance.
That sounds low, but most scientists would consider that a weak detection. There are many molecules that could create a feature in the same spectral range.
The “gold standard” for scientific detection is 5-sigma, which means the probability of the finding happening by chance is less than 0.00006%. For example, physicists at CERN gathered data patiently for two years until they had a 5-sigma detection of the Higgs boson particle, leading to a Nobel Prize one year later in 2013.
The announcement of the discovery of the Higgs boson took decades from the time Peter Higgs first predicted the existence of the particle. Scientists, such as Joe Incandela shown here, waited until they’d reached that 5-sigma level to say, ‘I think we have it.’
Third, a result needs to be repeatable. Results are considered reliable when they’ve been repeated – ideally corroborated by other investigators or confirmed using a different instrument. For K2-18b, this might mean detecting other molecules that indicate biology, such as oxygen in the planet’s atmosphere. Without more and better data, most researchers are viewing the claim of life on K2-18b with skepticism.
Claims of life on Mars
In the past, some scientists have claimed to have found life much closer to home, on the planet Mars.
Over a century ago, retired Boston merchant turned astronomer Percival Lowell claimed that linear features he saw on the surface of Mars were canals, constructed by a dying civilization to transport water from the poles to the equator. Artificial waterways on Mars would certainly have been a major discovery, but this example failed the other two criteria: strong evidence and repeatability.
Lowell was misled by his visual observations, and he was engaging in wishful thinking. No other astronomers could confirm his findings.
Mars, as taken by the OSIRIS instrument on the ESA Rosetta spacecraft during its February 2007 flyby of the planet and adjusted to show color.ESA & MPS for OSIRIS Team MPS/UPD/LAM/IAA/RSSD/INTA/UPM/DASP/IDA, CC BY-SA
In 1996, NASA held a press conference where a team of scientists presented evidence for biology in the Martian meteorite ALH 84001. Their evidence included an evocative image that seemed to show microfossils in the meteorite.
However, scientists have come up with explanations for the meteorite’s unusual features that do not involve biology. That extraordinary claim has dissipated.
More recently, astronomers detected low levels of methane in the atmosphere of Mars. Like dimethyl sulfide and oxygen, methane on Earth is made primarily – but not exclusively – by life. Different spacecraft and rovers on the Martian surface have returned conflicting results, where a detection with one spacecraft was not confirmed by another.
The low level and variability of methane on Mars is still a mystery. And in the absence of definitive evidence that this very low level of methane has a biological origin, nobody is claiming definitive evidence of life on Mars.
Claims of advanced civilizations
Detecting microbial life on Mars or an exoplanet would be dramatic, but the discovery of extraterrestrial civilizations would be truly spectacular.
The search for extraterrestrial intelligence, or SETI, has been underway for 75 years. No messages have ever been received, but in 1977 a radio telescope in Ohio detected a strong signal that lasted only for a minute.
This signal was so unusual that an astronomer working at the telescope wrote “Wow!” on the printout, giving the signal its name. Unfortunately, nothing like it has since been detected from that region of the sky, so the Wow! Signal fails the test of repeatability.
‘Oumuamua is the first object passing through the solar system that astronomers have identified as having interstellar origins.European Southern Observatory/M. Kornmesser
In 2017, a rocky, cigar-shaped object called ‘Oumuamua was the first known interstellar object to visit the solar system. ‘Oumuamua’s strange shape and trajectory led Harvard astronomer Avi Loeb to argue that it was an alien artifact. However, the object has already left the solar system, so there’s no chance for astronomers to observe it again. And some researchers have gathered evidence suggesting that it’s just a comet.
While many scientists think we aren’t alone, given the enormous amount of habitable real estate beyond Earth, no detection has cleared the threshold enunciated by Carl Sagan.
Claims about the universe
These same criteria apply to research about the entire universe. One particular concern in cosmology is the fact that, unlike the case of planets, there is only one universe to study.
A cautionary tale comes from attempts to show that the universe went through a period of extremely rapid expansion a fraction of a second after the Big Bang. Cosmologists call this event inflation, and it is invoked to explain why the universe is now smooth and flat.
In 2014, astronomers claimed to have found evidence for inflation in a subtle signal from microwaves left over after the Big Bang. Within a year, however, the team retracted the result because the signal had a mundane explanation: They had confused dust in our galaxy with a signature of inflation.
On the other hand, the discovery of the universe’s acceleration shows the success of the scientific method. In 1929, astronomer Edwin Hubble found that the universe was expanding. Then, in 1998, evidence emerged that this cosmic expansion is accelerating. Physicists were startled by this result.
Two research groups used supernovae to separately trace the expansion. In a friendly rivalry, they used different sets of supernovae but got the same result. Independent corroboration increased their confidence that the universe was accelerating. They called the force behind this accelerating expansion dark energy and received a Nobel Prize in 2011 for its discovery.
On scales large and small, astronomers try to set a high bar of evidence before claiming a discovery.Chris Impey, University Distinguished Professor of Astronomy, University of Arizona
This article is republished from The Conversation under a Creative Commons license. Read the original article.
In a dramatic turn of events that captured international attention, the Soviet-era spacecraft Kosmos 482 has completed its final descent after spending over five decades in Earth’s orbit. The spacecraft, which had been closely monitored due to its deteriorating orbit pattern, crashed into the Indian Ocean west of Jakarta at approximately 11:24 p.m. Phoenix time on May 9, 2025, ending weeks of speculation about its potential impact in Arizona.
The Historic Background Originally launched in 1972 as part of an ambitious mission to Venus, Kosmos 482 became a remnant of the Cold War space race after its mission failed. The approximately 3-foot-diameter spacecraft had been trapped in Earth’s orbit for 53 years, joining the growing collection of space debris that concerns modern astronomers and space agencies.
Arizona’s Emergency Response The potential threat to Arizona prompted a swift and coordinated response from local authorities. The Phoenix metropolitan area, initially identified as one of the possible impact zones, activated its emergency response protocols. This included:
Establishment of a temporary command center by the Arizona Department of Emergency Management
Enhanced monitoring systems at Phoenix Sky Harbor International Airport
Coordination between local, state, and federal agencies
Implementation of emergency communication channels for public updates
Local Infrastructure Impact Coincidentally, this event intersected with Phoenix Sky Harbor’s ongoing modernization project, which aims to improve passenger experiences and facility capabilities. The airport’s emergency response teams incorporated spacecraft monitoring into their existing protocols, demonstrating the facility’s adaptive capacity during potential aerospace emergencies.
“This situation, while ultimately resolving without incident in our region, showcased our emergency response capabilities and the importance of our ongoing infrastructure improvements,” stated a Phoenix Sky Harbor spokesperson. The modernization project, which was already underway, proved particularly relevant during this potential aerospace emergency.
Community Response Local residents and businesses in the Phoenix metropolitan area remained vigilant throughout the monitoring period. Emergency management officials maintained regular communications with the public, providing updates through various channels to ensure community awareness and preparedness.
Technical Analysis Space tracking organizations employed advanced monitoring systems to track Kosmos 482’s descent. The spacecraft, powered by systems similar to other Cold War-era satellites, provided valuable data for modern space debris tracking programs. Unlike modern spacecraft such as Voyager 1, which continues to operate using a radioisotope power system, Kosmos 482 had long since lost its operational capabilities.
Final Outcome The spacecraft’s ultimate crash site in the Indian Ocean brought relief to Arizona residents and officials. The incident concluded at approximately 2:24 a.m. EDT (11:24 p.m. Phoenix time), with no reported casualties or damage.
Looking Forward This event serves as a crucial reminder of the challenges posed by orbital debris and the importance of maintaining robust emergency response systems. It also highlights Phoenix’s growing role in aerospace monitoring and emergency management, particularly as the city continues to expand its aviation infrastructure.
Advertisement
The incident has prompted discussions about improving space debris monitoring systems and international cooperation in managing potential aerospace threats, ensuring better preparation for similar events in the future.
STM Daily News is a vibrant news blog dedicated to sharing the brighter side of human experiences. Emphasizing positive, uplifting stories, the site focuses on delivering inspiring, informative, and well-researchedcontent. With a commitment to accurate, fair, and responsible journalism, STM Daily News aims to foster a community of readers passionate about positive change and engaged in meaningful conversations. Join the movement and explore stories that celebrate the positive impacts shaping our world.
Rod: A creative force, blending words, images, and flavors. Blogger, writer, filmmaker, and photographer. Cooking enthusiast with a sci-fi vision. Passionate about his upcoming series and dedicated to TNC Network. Partnered with Rebecca Washington for a shared journey of love and art.
View all posts
Privacy & Cookies: This site uses cookies. By continuing to use this website, you agree to their use.
To find out more, including how to control cookies, see here:
Cookie Policy