Connect with us

The Earth

Extraordinary Aurora Displays Illuminate the Skies: A Rare Celestial Phenomenon

Rare geomagnetic storms caused extraordinary aurora displays, showcasing the mesmerizing power of solar activity—a celestial phenomenon.

Published

on

milky way at night
Photo by Pixabay on Pexels.com

Last week, a remarkable series of geomagnetic storms captivated skywatchers around the world as vibrant aurora displays graced the skies at unprecedented latitudes. These awe-inspiring celestial events, caused by three powerful geomagnetic storms, brought the mesmerizing dance of lights to the most southerly latitudes in the northern hemisphere in over two decades. On December 1 and 2, observers were treated to a stunning spectacle that left spectators in awe and wonder.

Unveiling the Southern Lights:
One of the most remarkable occurrences during this celestial extravaganza was the sighting of the Southern Lights, also known as the aurora Australis. This breathtaking natural phenomenon was witnessed in locations such as New Zealand, Tasmania, and southern Australia, captivating those fortunate enough to witness its ethereal radiance.

Unprecedented Visibility in Japan:
The Japanese islands experienced a rare treat as a vibrant red-colored aurora graced the skies of Hokkaido. For the first time since October 2003, the phenomenon was visible to the naked eye, offering a unique spectacle for observers. This extraordinary event served as a reminder of the immense beauty and power of our universe.

The Science Behind the Spectacle:
Solar physicists predicted the arrival of these remarkable displays following a solar flare that triggered three separate coronal mass ejections (CMEs) on the sun. A coronal mass ejection is a cloud of magnetic fields and charged particles that streams into space at astonishing speeds of up to 1,900 miles per second. These three CMEs occurred within the “Earth strike zone,” with streams of charged particles heading towards our planet in a rare “halo CME” event.

The Impact of Geomagnetic Storms:
When these charged particles interact with Earth’s magnetic field, they create a geomagnetic storm. The intensity of the solar wind determines the vigor and extent of the resulting displays. As these charged particles excite oxygen and nitrogen in Earth’s atmosphere, they produce stunning hues of green and red, painting the night sky with an otherworldly glow.

Expanding the Aurora’s Reach:
Typically, the aurora occurs within an oval around the Arctic and Antarctic Circles. However, during periods of heightened solar activity, such as the present, the aurora can extend closer to the equator. This rare event allowed the Northern Lights (aurora borealis) to be seen as far south as the Midwest U.S. states, Scotland, Wales, and Japan.


https://stmdailynews.com/category/science


Locations of Intense Displays:
While the aurora reached extraordinary latitudes, the most intense displays were still predominantly observed in locations around the Arctic Circle. Enthusiastic observers in Alaska, northern Canada, Iceland, Norway, Sweden, and Finland were treated to mesmerizing shows of nature’s grandeur.

The Power of Space Weather:
The solar wind, also known as “space weather,” consists of a stream of electrons, protons, and helium nuclei. It originates from coronal holes on the surface of the sun, which are dark regions with low-density plasma in the sun’s corona, its outer atmosphere. As the sun approaches the peak of Solar Cycle 25, this solar wind is becoming increasingly active, resulting in more intense displays of the aurora.

Advertisement
image 101376000 12222003

Anticipating Solar Maximum:
According to the Space Weather Prediction Center (SWPC), the height of the sun’s activity, known as the solar maximum, is predicted to occur between January and October 2024. As we approach this period, skywatchers can anticipate even more extraordinary aurora displays and be ready to witness the celestial spectacle.

The recent series of geomagnetic storms and subsequent aurora displays have left an indelible mark on the memories of those fortunate enough to witness them. From the rare sightings of the Southern Lights to the breathtaking red aurora visible in Japan, these celestial events remind us of the profound beauty and power of our universe. As we continue to explore and understand the intricacies of space weather, let us cherish these extraordinary moments and eagerly await the next chapter in the captivating dance of the Northern and Southern Lights.

https://www.space.com/magnetic-storm-historic-earth-solar-flares-power-grid

https://en.wikipedia.org/wiki/Aurora

Author

  • Rod Washington

    Rod: A creative force, blending words, images, and flavors. Blogger, writer, filmmaker, and photographer. Cooking enthusiast with a sci-fi vision. Passionate about his upcoming series and dedicated to TNC Network. Partnered with Rebecca Washington for a shared journey of love and art. View all posts

Want more stories 👋
“Your morning jolt of Inspiring & Interesting Stories!”

Sign up to receive awesome articles directly to your inbox.

We don’t spam! Read our privacy policy for more info.

STM Coffee Newsletter 1
Advertisement
image 101376000 12222003

Discover more from Daily News

Subscribe to get the latest posts sent to your email.

Rod: A creative force, blending words, images, and flavors. Blogger, writer, filmmaker, and photographer. Cooking enthusiast with a sci-fi vision. Passionate about his upcoming series and dedicated to TNC Network. Partnered with Rebecca Washington for a shared journey of love and art.

Continue Reading
Advertisement SodaStream USA, inc

Lifestyle

Engineering students explore how to ethically design and locate nuclear facilities in this college course

Published

on

nuclear plant
While nuclear power can reap enormous benefits, it also comes with some risks. Michel Gounot/GODONG/Stone via Getty Images
Aditi Verma, University of Michigan and Katie Snyder, University of Michigan Uncommon Courses is an occasional series from The Conversation U.S. highlighting unconventional approaches to teaching.

Title of course:

Socially Engaged Design of Nuclear Energy Technologies

What prompted the idea for the course?

The two of us had some experience with participatory design coming into this course, and we had a shared interest in bringing virtual reality into a first-year design class at the University of Michigan. It seemed like a good fit to help students learn about nuclear technologies, given that hands-on experience can be difficult to provide in that context. We both wanted to teach students about the social and environmental implications of engineering work, too. Aditi is a nuclear engineer and had been using participatory design in her research, and Katie had been teaching ethics and design to engineering students for many years.

What does the course explore?

Broadly, the course explores engineering design. We introduce our students to the principles of nuclear engineering and energy systems design, and we go through ethical concerns. They also learn communication strategies – like writing for different audiences. Students learn to design the exterior features of nuclear energy facilities in collaboration with local communities. The course focuses on a different nuclear energy technology each year. In the first year, the focus was on fusion energy systems. In fall 2024, we looked at locating nuclear microreactors near local communities. The main project was to collaboratively decide where a microreactor might be sited, what it might look like, and what outcomes the community would like to see versus which would cause concern. Students also think about designing nuclear systems with both future generations and a shared common good in mind. The class explores engineering as a sociotechnical practice – meaning that technologies are not neutral. They shape and affect social life, for better and for worse. To us, a sociotechnical engineer is someone who adheres to scientific and engineering fundamentals, communicates ethically and designs in collaboration with the people who are likely to be affected by their work. In class, we help our students reflect on these challenges and responsibilities.

Why is this course relevant now?

Nuclear energy system design is advancing quickly, allowing engineers to rethink how they approach design. Fusion energy systems and fission microreactors are two areas of rapidly evolving innovation. Microreactors are smaller than traditional nuclear energy systems, so planners can place them closer to communities. These smaller reactors will likely be safer to run and operate, and may be a good fit for rural communities looking to transition to carbon-neutral energy systems. But for the needs, concerns and knowledge of local people to shape the design process, local communities need to be involved in these reactor siting and design conversations.
A woman wearing a black VR headset, which looks like a large, bulky pair of glasses with no lenses.
Students in the course explore nuclear facilities in virtual reality. Thomas Barwick/DigitalVision via Getty Images

What materials does the course feature?

We use virtual reality models of both fission and fusion reactors, along with models of energy system facilities. AI image generators are helpful for rapid prototyping – we have used these in class with students and in workshops. This year, we are also inviting students to do some hands-on prototyping with scrap materials for a project on nuclear energy systems.

What will the course prepare students to do?

Students leave the course understanding that community engagement is an essential – not optional – component of good design. We equip students to approach technology use and development with users’ needs and concerns in mind. Specifically, they learn how to engage with and observe communities using ethical, respectful methods that align with the university’s engineering research standards.

What’s a critical lesson from the course?

As instructors, we have an opportunity – and probably also an obligation – to learn from students as much as we are teaching them course content. Gen Z students have grown up with environmental and social concerns as centerpieces of their media diets, and we’ve noticed that they tend to be more strongly invested in these topics than previous generations of engineering students. Aditi Verma, Assistant Professor of Nuclear Engineering and Radiological Sciences, University of Michigan and Katie Snyder, Lecturer III in Technical Communication, College of Engineering, University of Michigan This article is republished from The Conversation under a Creative Commons license. Read the original article.

Discover more from Daily News

Subscribe to get the latest posts sent to your email.

Continue Reading

Science

Lawsuits seeking to address climate change have promise but face uncertain future

Published

on

climate change
Kelsey Juliana, a lead plaintiff in a federal lawsuit over responsibility for climate change, speaks at a 2019 rally in Oregon. AP Photo/Steve Dipaola
Hannah Wiseman, Penn State The U.S. Supreme Court in March 2025 ended a decade-old lawsuit filed by a group of children who sought to hold the federal government responsible for some of the consequences of climate change. But just two months earlier, the justices allowed a similar suit from the city and county of Honolulu, Hawaii, to continue against oil and gas companies. Evidence shows that fossil fuel companies, electric utilities and the federal government have known about climate change, its dangers and its human causes for at least 50 years. But the steps taken by fossil fuel companies, utilities and governments, including the U.S. government, have not been enough to meet international climate targets. So local and state governments and citizens have asked the courts to force companies and public agencies to act. Their results have varied, with limited victories to date. But the cases keep coming.

Attacking the emissions themselves

In general, legal claims in the U.S. can be based on the U.S. and state constitutions, federal and state laws, or what is called “common law” – legal principles created by courts over time. Lawsuits have used state and federal laws to try to limit greenhouse gas pollution itself and to seek financial compensation for alleged industry cover-ups of the dangers of fossil fuels, among many other types of claims. In 2007 the U.S. Supreme Court determined that greenhouse gases such as carbon dioxide emitted from motor vehicles were a “pollutant” under the federal Clean Air Act. As a result, the court ordered the Environmental Protection Agency to either determine whether greenhouse gases from new vehicles contribute to climate change, and therefore endanger human health, or justify its refusal to study the issue. In 2009 the EPA found that carbon dioxide emissions did in fact endanger human health – a decision called the “endangerment finding.” In 2010 it imposed limits on carbon dioxide emissions from new vehicles and, later, from newly constructed power plants. But related EPA efforts to regulate emissions from older power plants – the ones that emit the most pollution – failed when challenged in court on the grounds that they went too far in limiting emissions beyond the power plants’ own properties. The Biden administration had finalized a new rule to clean up these older plants, but the Trump administration is now seeking to withdraw it. The Trump administration is also now beginning the complicated process of reviewing the 2009 endangerment finding. It could try to remove the legal basis for EPA greenhouse gas regulations.

A common-law approach

In response to this federal executive seesaw of climate action, some legal claims use a court-based, or common law, approach to address climate concerns. For instance, in Connecticut v. American Electric Power, filed in 2004, nine states asked a federal judge to order power plants to reduce their emissions. The states said those emissions contributed to global warming, which they argued met the federal common law definition of a “public nuisance.” That case ended when the U.S. Supreme Court ruled in 2011 that the existence of a statute – the federal Clean Air Actmeant common law did not apply. Other plaintiffs have tried to use the “public nuisance” claim or a related common-law claim of “trespass” to force large power plants or oil and gas producers to pay climate-related damages. But in those cases, too, courts found that the Clean Air Act overrode the common-law grounds for those claims. With those case outcomes, many plaintiffs have shifted their strategies, focusing more on state courts and seeking to hold the fossil fuel industry responsible for allegedly deceiving the public about the causes and effects of climate change.
file 20250414 56 7ic0s.png?ixlib=rb 4.1
Three examples of petroleum industry advertisements a lawsuit alleges are misleading about the causes of climate change. State of Maine v. BP, Chevron, ExxonMobil, Shell, Sunoco and American Petroleum Insititute

Examining deception

In many cases, state and local governments are arguing that the fossil fuel industry knew about the dangers of climate change and deceived the public about them, and that the industry exaggerated the extent of its investments in energy that doesn’t emit carbon. Rather than directly asking courts to order reduced carbon emissions, these cases tend to seek damages that will help governments cover the costs associated with climate change, such as construction of cooling centers and repair of roads damaged by increased precipitation. In legal terms, the lawsuits are saying oil and gas companies violated consumer-protection laws and committed common-law civil violations such as negligence. For instance, the city of Chicago alleges that major petroleum giants – along with the industry trade association the American Petroleum Institute – had “abundant knowledge” of the public harms of fossil fuels yet “actively campaigned” to hide that information and deceive consumers. Many other complaints by states and local governments make similar allegations. Another lawsuit, from the state of Maine, lists and provides photographs of a litany of internal industry documents showing industry knowledge of the threat of climate change. That lawsuit also cites a 1977 memo from an Exxon employee to Exxon executives, which stated that “current scientific opinion overwhelmingly favors attributing atmospheric carbon dioxide increase to fossil fuel consumption,” and a 1979 internal Exxon memo about the buildup of carbon dioxide emissions, which warned that “(t)he potential problem is great and urgent.” These complaints also show organizations supported by fossil fuel companies published ads as far back as the 1990s, with titles such as “Apocalypse No” and “Who told you the earth was warming … Chicken Little?” Some of these ads – part of a broader campaign – were funded by a group called the Information Council for the Environment, supported by coal producers and electric utilities. Courts have dismissed some of these complaints, finding that federal laws overrule the principles those suits are based on. But many are still winding their way through the courts. In 2023 the Supreme Court of Hawaii found that federal laws do not prevent climate claims based on state common law. In January 2025 the U.S. Supreme Court allowed the case to continue.
Several people sit in a group in a formal setting and speak to each other.
Lead claimant Rikki Held, then 22, confers with lawyers before the beginning of a 2023 Montana trial about young people’s rights in a time of climate change. William Campbell/Getty Images

Other approaches

Still other litigation approaches argue that governments inadequately reviewed the effects of greenhouse gas emissions, or even supported or subsidized those emissions caused by private industry. Those lawsuits – some of which were filed by children, with help from their parents or legal guardians – claim the governments’ actions violated people’s constitutional rights. For instance, children in the Juliana v. United States case, first filed in 2015, said 50 years of petroleum-supporting actions by presidents and various federal agencies had violated their fundamental “right to a climate system capable of sustaining human life.” The 9th U.S. Circuit Court of Appeals ruled that their claim was a “political question” – meant for Congress, not the courts. The U.S. Supreme Court declined to reconsider that ruling in March 2025. But children in Montana found more success. The Montana Constitution requires state officials and all residents to “maintain and improve a clean and healthful environment … for present and future generations.” In 2024 the Montana Supreme Court determined that this provision “includes a stable climate system that sustains human lives and liberties.” The Montana Supreme Court also reviewed a state law banning officials from considering greenhouse gas emissions of projects approved by the state. The court found that the ban violated the state constitution, too. Since then, the Montana Supreme Court has specifically required state officials to review the climate effects of a project for which permits were challenged. Concerned people and groups continue to file climate-related lawsuits across the country and around the world. They are seeing mixed results, but as the cases continue and more are filed, they are drawing attention to potential corporate and government wrongdoing, as well as the human costs of climate change. And they are inspiring shareholders and citizens to demand more accurate information and action from fossil fuel companies and electric utilities.The Conversation Hannah Wiseman, Professor of Law, Penn State This article is republished from The Conversation under a Creative Commons license. Read the original article.

Discover more from Daily News

Subscribe to get the latest posts sent to your email.

Continue Reading

News

Volcanic ash is a silent killer, more so than lava: What Alaska needs to know with Mount Spurr likely to erupt

Published

on

file 20250413 56 ikm44q.jpg?ixlib=rb 4.1
One of two main craters on Alaska’s Mount Spurr, shown in 1991. Earthquake activity suggests the volcano is close to erupting again in 2025. R.G. McGimsey/Alaska Volcano Observatory/U.S. Geological Survey, CC BY
David Kitchen, University of Richmond Volcanoes inspire awe with spectacular eruptions and incandescent rivers of lava, but often their deadliest hazard is what quietly falls from the sky. When a large volcano erupts, as Mount Spurr appears close to doing about 80 miles from Anchorage, Alaska, it can release enormous volumes of ash. Fine ash can infiltrate the lungs of people and animals who breathe it in, poison crops and disrupt aquatic life. Thick deposits of ash can collapse roofs, cripple utilities and disrupt transport networks. Ash may lack the visual impact of flowing lava, but as a geologist who studies disasters, I’m aware that ash travels farther, lasts longer and leaves deep scars.
A van is covered up to its windows in ash outside a home.
Ash buried cars and buildings after the 1984 eruption of Rabaul in Papua New Guinea. Volcano Hazards Program, U.S. Geological Survey

Volcanic ash: What it is, and why it matters

Volcanic ash forms when viscous magma – molten rock from deep beneath Earth’s surface – erupts, exploding into shards of rock, mineral and glass carried in a near-supersonic stream of hot gas. Towering clouds of ash rise several miles into the atmosphere, where the ash is captured by high-altitude winds that can carry it hundreds or even thousands of miles. As the volcanic ash settles back to Earth, it accumulates in layers that typically decrease in thickness with distance from the eruption source. Near the vent, the ash may be several feet deep, but communities farther away may see only a dusting.
A view from an airplane as Mount Spurr erupted in 1992. A dark cloud of ash and gases rises from the volcano.
When Mount Spurr erupted in 1992, a dark column of ash and gas shot into the atmosphere from the volcano’s Crater Peak vent. Wind patterns determine where the ash will fall. U.S. Geological Survey

Breathing danger: Health risks from ash

Breathing volcanic ash can irritate the throat and lungs, trigger asthma attacks and aggravate chronic respiratory conditions such as COPD. The finest particles pose the greatest risk because they can penetrate deep into the lungs and cause death by asphyxiation in the worst cases. Mild, short-term symptoms often resolve with rest. However, the long-term consequences of ash exposure can include silicosis, a lung disease and a possible cause of cancer. The danger increases in dry regions where fallen ash can be kicked up into the air again by wind or human activity.

Risks to pets and livestock

Humans aren’t the only ones at risk. Animals experience similar respiratory symptoms to humans. Domestic pets can develop respiratory distress, eye inflammation and paw irritation from exposure to ash.
Sheep covered with grey ash.
Ash covers sheep in Argentina after the 2011 Puyehue volcanic eruption in Chile. Federico Grosso/U.S. Geological Survey
Livestock face greater dangers. If grazing animals eat volcanic ash, it can damage their teeth, block their intestines and poison them. During the 2010 Eyjafjallajökull eruption in Iceland, farmers were advised to shelter sheep and cattle because the ash contained fluoride concentrations above the recognized safety threshold of 400 parts per million. Animals that remained exposed became sick and some died.

Harm to crops, soil and water

Soil and crops can also be damaged. Volcanic ash alters the acidity of soil and introduces harmful elements such as arsenic and sulfur into the environment. While the ash can add nutrients such as potassium and phosphorus that enhance fertility, the immediate impact is mostly harmful. Ash can smother crops, block sunlight and clog the tiny stomata, or pores, in leaves that allow plants to exchange gases with the atmosphere. It can also introduce toxins that render food unmarketable. Vegetables, fruit trees and vines are particularly vulnerable, but even sturdy cereals and grasses can die if ash remains on leaves or poisons emerging shoots. Following the 1991 Mount Pinatubo eruption, vast tracts of farmland in central Luzon in the Philippines were rendered unproductive for years due to acidic ash and buried topsoil. If multiple ashfalls occur in a growing season, crop failure becomes a near certainty. It was the cause of a historic famine that followed the eruption of Mount Tambora in 1815.
A collection of ash on a smooth surface for photographing.
Ash from a 1953 eruption of Mount Spurr included very fine grains, like powder. The ash cloud reached about 70,000 feet high and left Anchorage under a blanket of ash up to a quarter-inch deep, according to a U.S. Geological Survey report at the time. James St. John via Wikimedia Commons, CC BY
Electron microscope images of ash shows how pointy the shards are.
Electron microscope images of ash show how sharp the shards are. The top left image of shards from Mount Etna in 2002 is 1 mm across. Top right is an ash particle from Mount St. Helens magnified 200 times. The shards in the lower images are less than 0.064 mm. Volcano Hazards Program, U.S. Geological Survey
Ash can also contaminate surface water by introducing toxins and increasing the water’s acidity. The toxins can leach into groundwater, contaminating wells. Fine ash particles can also settle in waterways and smother aquatic plants and animals. During the 2008 Chaitén eruption in Chile, ash contamination led to widespread fish deaths in the Río Blanco.

Ash can ground airplanes, gum up infrastructure

Ash clouds are extremely dangerous to aircraft. The glassy ash particles melt when sucked into jet turbines, clog fuel systems and can stall engines in midair. In 1982, British Airways Flight 9 lost power in all four engines after flying through an ash cloud. A similar incident occurred in 1989 to KLM Flight 867 over Alaska. In 2010, Iceland’s Eyjafjallajökull eruption grounded more than 100,000 flights across Europe, disrupting travel for over 10 million passengers and costing the global economy billions of dollars. Volcanic ash can also wreak havoc on infrastructure by clogging water supplies, short-circuiting electrical systems and collapsing roofs under its weight. It can disrupt transportation, communication, rescue and power networks, as the 1991 eruption of Mount Pinatubo in the Philippines dramatically demonstrated.

What to do during ashfall

During an ashfall event, the most effective strategy to stay safe is to stay indoors as much as possible and avoid inhaling ash particles. Anyone who must go outside should wear a properly fitted N95 or P2 mask. Cloth masks provide little protection against fine ash. Rainwater tanks, troughs and open wells should be covered and monitored for contamination. Livestock should be moved to clean pastures or given uncontaminated fodder.
The challenges Alaska is facing if Mount Spurr erupts.
To reduce structural damage, ash should be cleared from roofs and gutters promptly, especially before rainfall. Older adults, children and people who are sick are at greatest risk, particularly those living in poorly ventilated homes. Rural communities that are dependent on agriculture and livestock are disproportionately affected by ashfall, as are low-income people who lack access to clean water, protective masks or safe shelter. Communities can stay informed about ash risks through official alerts, including those from the Volcanic Ash Advisory Centers, which monitor ash dispersion and issue timely warnings. The International Volcanic Health Hazard Network also offers guidelines on personal protection, emergency planning and ash cleanup.

The long tail of ash

Volcanic ash may fall quietly, but its effects are widespread, persistent and potentially deadly. It poses a chronic threat to health, agriculture, infrastructure and aquatic systems. Recognizing the risk is a crucial first step to protecting lives. Effective planning and public awareness can further help reduce the damage. David Kitchen, Associate Professor of Geology, University of Richmond This article is republished from The Conversation under a Creative Commons license. Read the original article.

Discover more from Daily News

Subscribe to get the latest posts sent to your email.

Continue Reading

Trending