Science
First contact with aliens could end in colonization and genocide if we don’t learn from history

David Delgado Shorter, University of California, Los Angeles; Kim TallBear, University of Alberta, and William Lempert, Bowdoin College
We’re only halfway through 2023, and it feels already like the year of alien contact.
In February, President Joe Biden gave orders to shoot down three unidentified aerial phenomena – NASA’s title for UFOs. Then, the alleged leaked footage from a Navy pilot of a UFO, and then news of a whistleblower’s report on a possible U.S. government cover-up about UFO research. Most recently, an independent analysis published in June suggests that UFOs might have been collected by a clandestine agency of the U.S. government.
If any actual evidence of extraterrestrial life emerges, whether from whistleblower testimony or an admission of a cover-up, humans would face a historic paradigm shift.
As members of an Indigenous studies working group who were asked to lend our disciplinary expertise to a workshop affiliated with the Berkeley SETI Research Center, we have studied centuries of culture contacts and their outcomes from around the globe. Our collaborative preparations for the workshop drew from transdisciplinary research in Australia, New Zealand, Africa and across the Americas.
In its final form, our group statement illustrated the need for diverse perspectives on the ethics of listening for alien life and a broadening of what defines “intelligence” and “life.” Based on our findings, we consider first contact less as an event and more as a long process that has already begun.
Who’s in charge of first contact
The question of who is “in charge” of preparing for contact with alien life immediately comes to mind. The communities – and their interpretive lenses – most likely to engage in any contact scenario would be military, corporate and scientific.
By giving Americans the legal right to profit from space tourism and planetary resource extraction, the Commercial Space Launch Competitiveness Act of 2015 could mean that corporations will be the first to find signs of extraterrestrial societies. Otherwise, while detecting unidentified aerial phenomena is usually a military matter, and NASA takes the lead on sending messages from Earth, most activities around extraterrestrial communications and evidence fall to a program called SETI, or the search for extraterrestrial intelligence.
SETI is a collection of scientists with a variety of research endeavors, including Breakthrough Listen, which listens for “technosignatures,” or markers, like pollutants, of a designed technology.
SETI investigators are virtually always STEM – science, technology, engineering and math – scholars. Few in the social science and humanities fields have been afforded opportunities to contribute to concepts of and preparations for contact.
In a promising act of disciplinary inclusion, the Berkeley SETI Research Center in 2018 invited working groups – including our Indigenous studies working group – from outside STEM fields to craft perspective papers for SETI scientists to consider.
Ethics of listening
Neither Breakthough Listen nor SETI’s site features a current statement of ethics beyond a commitment to transparency. Our working group was not the first to raise this issue. And while the SETI Institute and certain research centers have included ethics in their event programming, it seems relevant to ask who NASA and SETI answer to, and what ethical guidelines they’re following for a potential first contact scenario.
SETI’s Post-Detection Hub – another rare exception to SETI’s STEM-centrism – seems the most likely to develop a range of contact scenarios. The possible circumstances imagined include finding ET artifacts, detecting signals from thousands of light years away, dealing with linguistic incompatibility, finding microbial organisms in space or on other planets, and biological contamination of either their or our species. Whether the U.S. government or heads of military would heed these scenarios is another matter.
SETI-affiliated scholars tend to reassure critics that the intentions of those listening for technosignatures are benevolent, since “what harm could come from simply listening?” The chair emeritus of SETI Research, Jill Tarter, defended listening because any ET civilization would perceive our listening techniques as immature or elementary.
But our working group drew upon the history of colonial contacts to show the dangers of thinking that whole civilizations are comparatively advanced or intelligent. For example, when Christopher Columbus and other European explorers came to the Americas, those relationships were shaped by the preconceived notion that the “Indians” were less advanced due to their lack of writing. This led to decades of Indigenous servitude in the Americas.
The working group statement also suggested that the act of listening is itself already within a “phase of contact.” Like colonialism itself, contact might best be thought of as a series of events that starts with planning, rather than a singular event. Seen this way, isn’t listening potentially without permission just another form of surveillance? To listen intently but indiscriminately seemed to our working group like a type of eavesdropping.
It seems contradictory that we begin our relations with aliens by listening in without their permission while actively working to stop other countries from listening to certain U.S. communications. If humans are initially perceived as disrespectful or careless, ET contact could more likely lead to their colonization of us.
Histories of contact
Throughout histories of Western colonization, even in those few cases when contactees were intended to be protected, contact has led to brutal violence, pandemics, enslavement and genocide.
James Cook’s 1768 voyage on the HMS Endeavor was initiated by the Royal Society. This prestigious British academic society charged him with calculating the solar distance between the Earth and the Sun by measuring the visible movement of Venus across the Sun from Tahiti. The society strictly forbade him from any colonial engagements.
Though he achieved his scientific goals, Cook also received orders from the Crown to map and claim as much territory as possible on the return voyage. Cook’s actions put into motion wide-scale colonization and Indigenous dispossession across Oceania, including the violent conquests of Australia and New Zealand.
The Royal Society gave Cook a “prime directive” of doing no harm and to only conduct research that would broadly benefit humanity. However, explorers are rarely independent from their funders, and their explorations reflect the political contexts of their time.
As scholars attuned to both research ethics and histories of colonialism, we wrote about Cook in our working group statement to showcase why SETI might want to explicitly disentangle their intentions from those of corporations, the military and the government.
Although separated by vast time and space, both Cook’s voyage and SETI share key qualities, including their appeal to celestial science in the service of all humanity. They also share a mismatch between their ethical protocols and the likely long-term impacts of their success. https://www.youtube.com/embed/5gZwLGrJQrM?wmode=transparent&start=0 This BBC video describes the modern ramifications of Captain James Cook’s colonial legacy in New Zealand.
The initial domino of a public ET message, or recovered bodies or ships, could initiate cascading events, including military actions, corporate resource mining and perhaps even geopolitical reorganizing. The history of imperialism and colonialism on Earth illustrates that not everyone benefits from colonization. No one can know for sure how engagement with extraterrestrials would go, though it’s better to consider cautionary tales from Earth’s own history sooner rather than later.
This article has been updated to correct the date of James Cook’s voyage.
David Delgado Shorter, Professor of World Arts and Cultures/Dance, University of California, Los Angeles; Kim TallBear, Professor of Native Studies, University of Alberta, and William Lempert, Assistant Professor of Anthropology, Bowdoin College
This article is republished from The Conversation under a Creative Commons license. Read the original article.
The science section of our news blog STM Daily News provides readers with captivating and up-to-date information on the latest scientific discoveries, breakthroughs, and innovations across various fields. We offer engaging and accessible content, ensuring that readers with different levels of scientific knowledge can stay informed. Whether it’s exploring advancements in medicine, astronomy, technology, or environmental sciences, our science section strives to shed light on the intriguing world of scientific exploration and its profound impact on our daily lives. From thought-provoking articles to informative interviews with experts in the field, STM Daily News Science offers a harmonious blend of factual reporting, analysis, and exploration, making it a go-to source for science enthusiasts and curious minds alike. https://stmdailynews.com/category/science/
Discover more from Daily News
Subscribe to get the latest posts sent to your email.
astronomy
A Celestial Spectacle: Witness the Rare Planetary Parade on February 28
On February 28, 2025, a rare planetary parade will showcase all seven planets aligning in the night sky. This remarkable event won’t occur again until 2040, making it unmissable.

Planetary Parade
Astronomy enthusiasts and casual stargazers alike have something extraordinary to look forward to at the end of February. For one brief moment, on the evening of February 28, 2025, all seven planets—Mars, Jupiter, Uranus, Venus, Neptune, Mercury, and Saturn—will align in the night sky, creating a captivating planetary parade. This remarkable event marks the last time such an alignment will be visible until 2040, making it an occasion not to be missed.
What to Expect
The planetary parade will unfold shortly after sunset, with each planet showcasing its brilliance against the backdrop of the evening sky. While most of these celestial bodies will shine brighter than even the brightest stars, Uranus and Neptune will likely require binoculars or a telescope for a better view.
Currently, six of the planets are already aligned, but stargazers will have to wait until February 28 for Mercury to make its debut just above the horizon. Dr. Christopher Barnes, a senior lecturer at the University of Derby, explains the visibility details: “Mars will appear in the east, Jupiter and Uranus in the southeast, and Venus, Neptune, and Saturn in the west.”
Viewing Tips
For those wishing to experience this cosmic event, the best time to observe will be just after sunset when the stars begin to appear. Dr. Barnes suggests that even people in urban areas, where light pollution is often an issue, will be able to see most of the planets. However, seeking a location away from city lights will enhance the viewing experience.
The Benefits of Stargazing
Beyond the thrilling visual spectacle, taking time to gaze upon the stars and planets offers numerous benefits for one’s mental and emotional well-being. Dr. Barnes points out that stargazing encourages mindfulness, allowing individuals to detach from the stresses of daily life. “Engaging with the night sky fosters a sense of peace, restoration, and perspective,” he says.
Future Events
After February 28, the next opportunity to see a planetary alignment of five or more planets will occur in late October 2028 and again in February 2034. However, another seven-planet alignment will not be witnessed for another 15 years, making this February a particularly special occasion.
To cater to those unable to view the parade due to unfavorable weather or light pollution, several observatories will provide live streams of the event. This means everyone can partake in this astral celebration from the comfort of their homes.
As we approach February 28, it’s time to mark your calendars for this rare planetary parade. Whether you grab your telescope, plan a trip to a dark-sky location, or tune in to a live stream, don’t miss your chance to witness this extraordinary alignment of the planets, a spectacle that will be remembered long after it fades from view. Prepare to look up and enjoy the wonders of our solar system!
Resources:
Who doesn’t love a parade, especially a planet parade? How and when to see up to 7 planets
Planetary Parade will soon be visible in the evening sky
The science section of our news blog STM Daily News provides readers with captivating and up-to-date information on the latest scientific discoveries, breakthroughs, and innovations across various fields. We offer engaging and accessible content, ensuring that readers with different levels of scientific knowledge can stay informed. Whether it’s exploring advancements in medicine, astronomy, technology, or environmental sciences, our science section strives to shed light on the intriguing world of scientific exploration and its profound impact on our daily lives. From thought-provoking articles to informative interviews with experts in the field, STM Daily News Science offers a harmonious blend of factual reporting, analysis, and exploration, making it a go-to source for science enthusiasts and curious minds alike. https://stmdailynews.com/category/science/
Discover more from Daily News
Subscribe to get the latest posts sent to your email.
News
Water is the other US-Mexico border crisis, and the supply crunch is getting worse
The U.S.-Mexico border is facing a severe water crisis exacerbated by climate change, increased demand, and pollution. Collaborative governance is essential to address these growing challenges effectively.

Gabriel Eckstein, Texas A&M University and Rosario Sanchez, Texas A&M University
Immigration and border security will be the likely focus of U.S.-Mexico relations under the new Trump administration. But there also is a growing water crisis along the U.S.–Mexico border that affects tens of millions of people on both sides, and it can only be managed if the two governments work together.
Climate change is shrinking surface and groundwater supplies in the southwestern U.S. Higher air temperatures are increasing evaporation rates from rivers and streams and intensifying drought. Mexico is also experiencing multiyear droughts and heat waves.
Growing water use is already overtaxing limited supplies from nearly all of the region’s cross-border rivers, streams and aquifers. Many of these sources are contaminated with agricultural pollutants, untreated waste and other substances, further reducing the usability of available water.
As Texas-based scholars who study the legal and scientific aspects of water policy, we know that communities, farms and businesses in both countries rely on these scarce water supplies. In our view, water conditions on the border have changed so much that the current legal framework for managing them is inadequate.
Unless both nations recognize this fact, we believe that water problems in the region are likely to worsen, and supplies may never recover to levels seen as recently as the 1950s. Although the U.S. and Mexico have moved to address these concerns by updating the 1944 water treaty, these steps are not long-term solutions.
Growing demand, shrinking supply
The U.S.-Mexico border region is mostly arid, with water coming from a few rivers and an unknown amount of groundwater. The main rivers that cross the border are the Colorado and the Rio Grande – two of the most water-stressed systems in the world.
The Colorado River provides water to more than 44 million people, including seven U.S. and two Mexican states, 29 Indian tribes and 5.5 million acres of farmland. Only about 10% of its total flow reaches Mexico. The river once emptied into the Gulf of California, but now so much water is withdrawn along its course that since the 1960s it typically peters out in the desert.
The Rio Grande supplies water to roughly 15 million people, including 22 Indian tribes, three U.S. and four Mexican states and 2.8 million irrigated acres. It forms the 1,250-mile (2,000-kilometer) Texas-Mexico border, winding from El Paso in the west to the Gulf of Mexico in the east.

Other rivers that cross the border include the Tijuana, San Pedro, Santa Cruz, New and Gila. These are all significantly smaller and have less economic impact than the Colorado and the Rio Grande.
At least 28 aquifers – underground rock formations that contain water – also traverse the border. With a few exceptions, very little information on these shared resources exists. One thing that is known is that many of them are severely overtapped and contaminated.
Nonetheless, reliance on aquifers is growing as surface water supplies dwindle. Some 80% of groundwater used in the border region goes to agriculture. The rest is used by farmers and industries, such as automotive and appliance manufacturers.
Over 10 million people in 30 cities and communities throughout the border region rely on groundwater for domestic use. Many communities, including Ciudad Juarez; the sister cities of Nogales in both Arizona and Sonora; and the sister cities of Columbus in New Mexico and Puerto Palomas in Chihuahua, get all or most of their fresh water from these aquifers.
A booming region
About 30 million people live within 100 miles (160 kilometers) of the border on both sides. Over the next 30 years, that figure is expected to double.
Municipal and industrial water use throughout the region is also expected to increase. In Texas’ lower Rio Grande Valley, municipal use alone could more than double by 2040.
At the same time, as climate change continues to worsen, scientists project that snowmelt will decrease and evaporation rates will increase. The Colorado River’s baseflow – the portion of its volume that comes from groundwater, rather than from rain and snow – may decline by nearly 30% in the next 30 years.
Precipitation patterns across the region are projected to be uncertain and erratic for the foreseeable future. This trend will fuel more extreme weather events, such as droughts and floods, which could cause widespread harm to crops, industrial activity, human health and the environment.
Further stress comes from growth and development. Both the Colorado River and Rio Grande are tainted by pollutants from agricultural, municipal and industrial sources. Cities on both sides of the border, especially on the Mexican side, have a long history of dumping untreated sewage into the Rio Grande. Of the 55 water treatment plants located along the border, 80% reported ongoing maintenance, capacity and operating problems as of 2019.
Drought across the border region is already stoking domestic and bilateral tensions. Competing water users are struggling to meet their needs, and the U.S. and Mexico are straining to comply with treaty obligations for sharing water.
Cross-border water politics
Mexico and the United States manage water allocations in the border region mainly under two treaties: a 1906 agreement focused on the Upper Rio Grande Basin and a 1944 treaty covering the Colorado River and Lower Rio Grande.
Under the 1906 treaty, the U.S. is obligated to deliver 60,000 acre-feet of water to Mexico where the Rio Grande reaches the border. This target may be reduced during droughts, which have occurred frequently in recent decades. An acre-foot is enough water to flood an acre of land 1 foot deep – about 325,000 gallons (1.2 million liters).
Allocations under the 1944 treaty are more complicated. The U.S. is required to deliver 1.5 million acre-feet of Colorado River water to Mexico at the border – but as with the 1906 treaty, reductions are allowed in cases of extraordinary drought.
Until the mid-2010s, the U.S. met its full obligation each year. Since then, however, regional drought and climate change have severely reduced the Colorado River’s flow, requiring substantial allocation reductions for both the U.S. and Mexico.
In 2025, states in the U.S. section of the lower Colorado River basin will see a reduction of over 1 million acre-feet from prior years. Mexico’s allocation will decline by approximately 280,500 acre-feet under the 1944 treaty.
This agreement provides each nation with designated fractions of flows from the Lower Rio Grande and specific tributaries. Regardless of water availability or climatic conditions, Mexico also is required to deliver to the U.S. a minimum of 1,750,000 acre-feet of water from six named tributaries, averaged over five-year cycles. If Mexico falls short in one cycle, it can make up the deficit in the next five-year cycle, but cannot delay repayment further. https://www.youtube.com/embed/IgWSMgg9TmE?wmode=transparent&start=0 The U.S. and Mexico are struggling to share a shrinking water supply in the border region.
Since the 1990s, extraordinary droughts have caused Mexico to miss its delivery obligations three times. Although Mexico repaid its water debts in subsequent cycles, these shortfalls raised diplomatic tensions that led to last-minute negotiations and large-scale water transfers from Mexico to the U.S.
Mexican farmers in Lower Rio Grande irrigation districts who had to shoulder these cuts felt betrayed. In 2020, they protested, confronting federal soldiers and temporarily seizing control of a dam.
U.S. President Donald Trump and Mexican President Claudia Scheinbaum clearly appreciate the political and economic importance of the border region. But if water scarcity worsens, it could supplant other border priorities.
In our view, the best way to prevent this would be for the two countries to recognize that conditions are deteriorating and update the existing cross-border governance regime so that it reflects today’s new water realities.
Gabriel Eckstein, Professor of Law, Texas A&M University and Rosario Sanchez, Senior Research Scientist, Texas Water Resources Institute, Texas A&M University
This article is republished from The Conversation under a Creative Commons license. Read the original article.
Discover more from Daily News
Subscribe to get the latest posts sent to your email.
Tech
How close are quantum computers to being really useful? Podcast
Quantum computers could revolutionize science by solving complex problems. However, scaling and error correction remain significant challenges before achieving practical applications.

Quantum computers have the potential to solve big scientific problems that are beyond the reach of today’s most powerful supercomputers, such as discovering new antibiotics or developing new materials.
But to achieve these breakthroughs, quantum computers will need to perform better than today’s best classical computers at solving real-world problems. And they’re not quite there yet. So what is still holding quantum computing back from becoming useful?
In this episode of The Conversation Weekly podcast, we speak to quantum computing expert Daniel Lidar at the University of Southern California in the US about what problems scientists are still wrestling with when it comes to scaling up quantum computing, and how close they are to overcoming them.
Quantum computers harness the power of quantum mechanics, the laws that govern subatomic particles. Instead of the classical bits of information used by microchips inside traditional computers, which are either a 0 or a 1, the chips in quantum computers use qubits, which can be both 0 and 1 at the same time or anywhere in between. Daniel Lidar explains:
“Put a lot of these qubits together and all of a sudden you have a computer that can simultaneously represent many, many different possibilities … and that is the starting point for the speed up that we can get from quantum computing.”
Faulty qubits
One of the biggest problems scientist face is how to scale up quantum computing power. Qubits are notoriously prone to errors – which means that they can quickly revert to being either a 0 or a 1, and so lose their advantage over classical computers.
Scientists have focused on trying to solve these errors through the concept of redundancy – linking strings of physical qubits together into what’s called a “logical qubit” to try and maximise the number of steps in a computation. And, little by little, they’re getting there.
In December 2024, Google announced that its new quantum chip, Willow, had demonstrated what’s called “beyond breakeven”, when its logical qubits worked better than the constituent parts and even kept on improving as it scaled up.
Lidar says right now the development of this technology is happening very fast:
“For quantum computing to scale and to take off is going to still take some real science breakthroughs, some real engineering breakthroughs, and probably overcoming some yet unforeseen surprises before we get to the point of true quantum utility. With that caution in mind, I think it’s still very fair to say that we are going to see truly functional, practical quantum computers kicking into gear, helping us solve real-life problems, within the next decade or so.”
Listen to Lidar explain more about how quantum computers and quantum error correction works on The Conversation Weekly podcast.
This episode of The Conversation Weekly was written and produced by Gemma Ware with assistance from Katie Flood and Mend Mariwany. Sound design was by Michelle Macklem, and theme music by Neeta Sarl.
Clips in this episode from Google Quantum AI and 10 Hours Channel.
You can find us on Instagram at theconversationdotcom or via e-mail. You can also subscribe to The Conversation’s free daily e-mail here.
Listen to The Conversation Weekly via any of the apps listed above, download it directly via our RSS feed or find out how else to listen here.
Gemma Ware, Host, The Conversation Weekly Podcast, The Conversation
This article is republished from The Conversation under a Creative Commons license. Read the original article.
Discover more from Daily News
Subscribe to get the latest posts sent to your email.
-
Urbanism1 year ago
Signal Hill, California: A Historic Enclave Surrounded by Long Beach
-
News2 years ago
Diana Gregory Talks to us about Diana Gregory’s Outreach Services
-
Senior Pickleball Report2 years ago
The Absolute Most Comfortable Pickleball Shoe I’ve Ever Worn!
-
STM Blog2 years ago
World Naked Gardening Day: Celebrating Body Acceptance and Nature
-
Senior Pickleball Report2 years ago
ACE PICKLEBALL CLUB TO DEBUT THEIR HIGHLY ANTICIPATED INDOOR PICKLEBALL FRANCHISES IN THE US, IN EARLY 2023
-
Travel2 years ago
Unique Experiences at the CitizenM
-
Automotive2 years ago
2023 Nissan Sentra pricing starts at $19,950
-
Senior Pickleball Report2 years ago
“THE PEOPLE’S CHOICE AWARDS OF PICKLEBALL” – VOTING OPEN