infrastructure
Hackers could try to take over a military aircraft; can a cyber shuffle stop them?
Sandia, Purdue team up to test cyberdefense against an algorithm trained to break it
Newswise — ALBUQUERQUE, N.M. — A cybersecurity technique that shuffles network addresses like a blackjack dealer shuffles playing cards could effectively befuddle hackers gambling for control of a military jet, commercial airliner or spacecraft, according to new research. However, the research also shows these defenses must be designed to counter increasingly sophisticated algorithms used to break them.
Many aircraft, spacecraft and weapons systems have an onboard computer network known as military standard 1553, commonly referred to as MIL-STD-1553, or even just 1553. The network is a tried-and-true protocol for letting systems like radar, flight controls and the heads-up display talk to each other.
Securing these networks against a cyberattack is a national security imperative, said Chris Jenkins, a Sandia National Laboratories cybersecurity scientist. If a hacker were to take over 1553 midflight, he said, the pilot could lose control of critical aircraft systems, and the impact could be devastating.
Jenkins is not alone in his concerns. Many researchers across the country are designing defenses for systems that utilize the MIL-STD-1553 protocol for command and control. Recently, Jenkins and his team at Sandia partnered with researchers at Purdue University in West Lafayette, Indiana, to test an idea that could secure these critical networks.
Their results, recently published in the scientific journal IEEE Transactions on Dependable and Secure Computing, show that done the right way, a technique already known in cybersecurity circles, called moving target defense, can effectively protect MIL-STD-1553 networks against a machine-learning algorithm. Sandia’s Laboratory Directed Research and Development program funded the research.
“When we talk about protecting our computer systems, frequently there are two main pieces we rely on,” said Eric Vugrin, a Sandia cybersecurity senior scientist who also worked on the project. “The first approach is just keeping the bad guy out and never permitting access to the system. The physical analogue is to build a big wall and don’t let him in in the first place. And the backup plan is, if the wall doesn’t work, we rely on detection. Both of those approaches are imperfect. And so, what moving target defense offers as a complementary strategy is, even if those two approaches fail, moving target confuses the attacker and makes it more difficult to do damage.”
Moving target defense must keep cyberattackers guessing
Like a game of three-card monte, in which a con artist uses sleight of hand to shuffle cards side-to-side, moving target defense requires randomness. Without it, the defense unravels. Researchers wanted to know whether a moving target defense would work to constantly change network addresses, unique numbers assigned to each device on a network. They weren’t sure it would work because, compared to other types of networks, MIL-STD-1553’s address space is small and therefore difficult to randomize.
For example, the strategy has proven useful with internet protocols, which have millions or billions of network addresses at their disposal, but 1553 only has 31. In other words, Sandia had to come up with a way to surreptitiously shuffle 31 numbers in a way that couldn’t easily be decoded.
“Someone looked me in the face and said it’s not possible because it was just 31 addresses,” Jenkins said. “And because the number is so small compared to millions or billions or trillions, people just felt like it wasn’t enough randomness.”
The challenge with randomizing a small set of numbers is that “Nothing in computer software is truly random. It’s always pseudorandom,” said Sandia computer scientist Indu Manickam. Everything must be programmed, she said, so there’s always a hidden pattern that can be discovered.
With enough time and data, she said, “A human with an Excel sheet should be able to get it.”
Manickam is an expert in machine learning, or computer algorithms that identify and predict patterns. These algorithms, though beneficial to cybersecurity and many other fields of research and engineering, pose a threat to moving target defenses because they can potentially spot the pattern to a randomization routine much faster than a human.
“We’re using machine-learning techniques to better defend our systems,” Vugrin said. “We also know the bad guys are using machine learning to attack the systems. And so, one of the things that Chris identified early on was that we do not want to set up a moving target defense where somebody might use a machine-learning attack to break it and render the defense worthless.”
Sophisticated algorithms don’t necessarily spell the end for this type of cyberdefense. Cybersecurity designers can simply write a program that changes the randomization pattern before a machine can catch on.
But the Sandia team needed to know how fast machine learning could break their defense. So, they partnered with Bharat Bhargava, a professor of computer science at Purdue University, to test it. Bhargava and his team had been involved previously in researching aspects of moving target defenses.
For the last seven years, Bhargava said, the research fields of cybersecurity and machine learning have been colliding. And that’s been reshaping concepts in cybersecurity.
“What we want to do is learn how to defend against an attacker who is also learning,” Bhargava said.
Test results inform future improvements to cybersecurity
Jenkins and the Sandia team set up two devices to communicate back and forth on a 1553 network. Occasionally, one device would slip in a coded message that would change both devices’ network addresses. Jenkins sent Bhargava’s research team logs of these communications using different randomization routines. Using this data, the Purdue team trained a type of machine-learning algorithm called long short-term memory to predict the next set of addresses.
The first randomization routine was not very effective.
“We were not only able to just detect the next set of addresses that is going to appear, but the next three addresses,” said Ganapathy Mani, a former member of the Purdue team who contributed to the research.
The algorithm had scored 0.9 out of a perfect 1.0 on what’s called a Matthews correlation coefficient, which rates how well a machine-learning algorithm performs.
But the second set of logs, which used a more dynamic routine, resulted in a radically different story. The algorithm only scored 0.2.
“0.2 is pretty close to random, so it didn’t really learn anything,” Manickam said.
The test showed that moving target defense can fundamentally work, but more importantly it gave both teams insights into how cybersecurity engineers should design these defenses to withstand a machine-learning-based assault, a concept the researchers call threat-informed codesign.
Defenders, for example, could “Add fake data into it so that the attackers cannot learn from it,” Mani said.
The findings could help improve the security of other small, cyber-physical networks beyond MIL-STD-1553, such as those used in critical infrastructure.
Jenkins said, “Being able to do this work for me, personally, was somewhat satisfying because it showed that given the right type of technology and innovation, you can take a constrained problem and still apply moving target defense to it.”
Sandia National Laboratories is a multimission laboratory operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration. Sandia Labs has major research and development responsibilities in nuclear deterrence, global security, defense, energy technologies and economic competitiveness, with main facilities in Albuquerque, New Mexico, and Livermore, California.
Journal Link: IEEE Transactions on Dependable and Secure Computing
Source: Sandia National Laboratories
Discover more from Daily News
Subscribe to get the latest posts sent to your email.
STM Blog
That year LA declared it was at “Peak Car!”
Was there a time it was considered that “The City of Angeles,” had reached “Peak Car?”
I recently came across an article posted by the Metro Digital Resources Librarian on the Dorothy Peyton Gray Transportation Library and Archive web site run by Metro Los Angeles. The article talked about LA’s new obsession with the automobile and how it gained popularity, in the early 1920s.
Peak Car Era
Library researchers pointed out that notable resources concurred with this, including Scott L. Bottles’ Los Angeles and the Automobile: The Making of the Modern City, and Ashleigh Brilliant’s The Great Car Craze, How Southern California Collided with the Automobile in the 1920s.
The automobile was new and fresh, and also offered freedom to its owners, who realized that they could become more mobile and not rely solely on the massive LA street car network at the time. The number of vehicle registrations in Los Angeles had quadrupled in just an eight-year period from 1914-1922.
“Automobile use exploded as the passenger vehicle transitioned from a hobbyist’s pursuit to a relatively affordable means of getting around the sprawling region and beyond.”
Metro Librarian found out what was happening on the public transit side of the story when they found an article published in Electric Railway Journal titled “California and Her Tractions, Part II.“
MetroDigital Resource Librarian:
As one of several features titled “A Series of Articles on Salient Phases of the Electric Railway Situation,” author Edward Hungerford details the then current state of public transit in the Los Angeles area.
And within that overview, he interviews Paul Shoup, Pacific Electric Railways president and vice-president of Southern Pacific Company.
Hungerford documents Pacific Electric’s earnings in a recent six-month period, and asks Shoup “for the real translation of these figures.”
Shoup responds by stating:
“They mean that the peak of the competition of the automobile, publicly or privately owned or operated, has been reached out here — and passed. Not only is the rapidly rising cost of cars and tires and gasoline and oil beginning to deter the overenthusiastic motorists, but I think that the novelty of excessive motor riding also is rather wearing off. The hazards of driving on crowded highways are becoming more apparent and parking spaces in towns and cities more a question of doubt.
In addition to our great numbers of motor stage routes in every direction, we now have some 500,000 automobiles in California licensed for pleasure purposes, to which should be added the cars owned and operated by the 100,000 Easterners who come out here every winter. The competitive effect of all these cars has been, and still is, vast indeed. But we already can see in it a declining curve.“
Yes, you read that right, Shoup declared that personal vehicle usage had peaked and that it was on the decline.
Shoup explains that Los Angeles Railway profits were consistent with those of Pacific Electric, but acknowledges that “increases in both operating cost and taxes had gone ahead a little more than proportionately.” But he intimates that the rising cost of automobile operation (gas, tires) means that cars will cease their encroachment into transit’s share of mobility.
MetroDigital Resource Librarian:
This statement was part of an interview published in a national journal. Was he telling industry professionals what they wanted to hear? Did he want to assuage fears of rail employees that their jobs were going to disappear as more people purchased and used automobiles? Was he hoping that his perspective would turn into a self-fulfilling prophecy so he could remain atop Pacific Electric and Southern Pacific?
You can read the full article here: https://metroprimaryresources.info/when-los-angeles-was-declared-to-have-hit-peak-car-in-1920/15665/
https://stmdailynews.com/category/stm-blog/blog/
Discover more from Daily News
Subscribe to get the latest posts sent to your email.
Urbanism
Riding the Rails to the Future: Brightline West’s Game-Changing Announcement
Brightline West Project
As a passionate advocate for modern transportation, I am beyond excited about the latest development in American rail: the Brightline West project, which is officially one step closer to reality with the recent signing of a $3 billion grant agreement by the Federal Railroad Administration (FRA)! This project isn’t just another rail line; it’s a historic leap forward for high-speed rail in the U.S. and a beacon of progress for public transportation enthusiasts like myself.
On September 26, 2024, this monumental agreement was finalized, marking the beginning of what many of us have dreamed about for decades—true high-speed rail connecting Las Vegas to Southern California! With trains capable of reaching speeds over 200 miles per hour, we’re talking about radically transforming how we travel between these two bustling regions.
To have a project of this magnitude come to life thanks to a strong public-private partnership is inspiring. Just look at the numbers: over 35,000 jobs are expected to be created, including 10,000 union construction jobs. This is a huge win, not only for those in the industry but also for local economies and communities, and it sets a precedent for future infrastructure efforts across the country.
Michael Reininger, the CEO of Brightline, really hit the nail on the head with his assertion that this project will “jumpstart the high-speed rail industry in America.” It’s long overdue, and finally, we are moving forward. The Brightline West project won’t just connect cities; it will embody a bold, eco-friendly approach to our transportation challenges—reducing CO2 emissions by over 400,000 tons annually and removing three million cars off the roads that currently choke the I-15.
Imagine this: a seamless, comfortable two-hour journey from Las Vegas to Rancho Cucamonga, complete with onboard amenities like food and Wi-Fi. For someone who routinely endures the endless traffic jams on the freeway, the thought of relaxing in a sleek train while taking in the stunning California desert views excites me beyond measure! No more cramped airplane seats or endless hours stuck in a car; we’ll be able to travel in style and comfort.
And it warms my heart to see the emphasis on sustainability and environmental responsibility. The fact that Brightline West will utilize zero-emission, fully electric trains positions it as the premiere green transportation choice in America. It’s initiatives like these that give me hope for our future and showcase how modern rail can lead the way in combating climate change.
Heavy construction is slated to kick off in 2025, and early groundwork is already ongoing. Crews are busy drilling geotechnical borings along the I-15, and I can practically feel the anticipation in the air! Soon enough, we’ll see new stations sprouting up, including one right in the heart of Las Vegas—a city known for its bright lights and bustling energy!
As someone who often travels for both leisure and business, I am particularly looking forward to the role this project will play as we approach the 2028 Olympic Games in Los Angeles. Brightline West will undoubtedly serve as an essential transport option for visitors and residents alike, highlighting what a modern transportation system can achieve.
In closing, there’s so much to be excited about! The Brightline West project calls forth a vision of the future that is connected, rapid, and environmentally conscious. It represents the culmination of years of advocacy, dreaming, and hard work. I look forward to seeing how this journey unfolds as we ride the rails toward a new era in American transportation.
Here’s to the future of rail in America! 🚄🌟
Until next time, happy rail journeys, everyone!
This post is inspired by the recent developments surrounding the Brightline West project.
https://www.brightlinewest.com
The Bridge is a section of the STM Daily News Blog meant for diversity, offering real news stories about bona fide community efforts to perpetuate a greater good. The purpose of The Bridge is to connect the divides that separate us, fostering understanding and empathy among different groups. By highlighting positive initiatives and inspirational actions, The Bridge aims to create a sense of unity and shared purpose. This section brings to light stories of individuals and organizations working tirelessly to promote inclusivity, equality, and mutual respect. Through these narratives, readers are encouraged to appreciate the richness of diverse perspectives and to participate actively in building stronger, more cohesive communities.
https://stmdailynews.com/category/the-bridge
Discover more from Daily News
Subscribe to get the latest posts sent to your email.
Tech
A third of the world’s population lacks internet connectivity − airborne communications stations could change that
Mohamed-Slim Alouini, King Abdullah University of Science and Technology and Mariette DiChristina, Boston University
About one-third of the global population, around 3 billion people, don’t have access to the internet or have poor connections because of infrastructure limitations, economic disparities and geographic isolation.
Today’s satellites and ground-based networks leave communications gaps where, because of geography, setting up traditional ground-based communications equipment would be too expensive.
High-altitude platform stations – telecommunications equipment positioned high in the air, on uncrewed balloons, airships, gliders and airplanes – could increase social and economic equality by filling internet connectivity gaps in ground and satellite coverage. This could allow more people to participate fully in the digital age.
One of us, Mohamed-Slim Alouini, is an electrical engineer who contributed to an experiment that showed it is possible to provide high data rates and ubiquitous 5G coverage from the stratosphere. The stratosphere is the second lowest layer of the atmosphere, ranging from 4 to 30 miles above the Earth. Commercial planes usually fly in the lower part of the stratosphere. The experiment measured signals between platform stations and users on the ground in three scenarios: a person staying in one place, a person driving a car and a person operating a boat.
My colleagues measured how strong the signal is in relation to interference and background noise levels. This is one of the measures of network reliability. The results showed that the platform stations can support high-data-rate applications such as streaming 4K resolution videos and can cover 15 to 20 times the area of standard terrestrial towers.
Early attempts by Facebook and Google to commercially deploy platform stations were unsuccessful. But recent investments, technological improvements and interest from traditional aviation companies and specialized aerospace startups may change the equation.
The goal is global connectivity, a cause that brought the platform stations idea recognition in the World Economic Forum’s 2024 Top 10 Emerging Technologies report. The international industry initiative HAPS Alliance, which includes academic partners, is also pushing toward that goal.
Fast, cost effective, flexible
Platform stations would be faster, more cost effective and more flexible than satellite-based systems.
Because they keep communications equipment closer to Earth than satellites, the stations could offer stronger, higher-capacity signals. This would enable real-time communications speedy enough to communicate with standard smartphones, high-resolution capabilities for imaging tasks and greater sensitivity for sensing applications. They transmit data via free-space optics, or light beams, and large-scale antenna array systems, which can send large amounts of data quickly.
Satellites can be vulnerable to eavesdropping or jamming when their orbits bring them over adversarial countries. But platform stations remain within the airspace of a single country, which reduces that risk.
High-altitude platform stations are also easier to put in place than satellites, which have high launch and maintenance costs. And the regulatory requirements and compliance procedures required to secure spots in the stratosphere are likely to be simpler than the complex international laws governing satellite orbits. Platform stations are also easier to upgrade, so improvements could be deployed more quickly.
Platform stations are also potentially less polluting than satellite mega-constellations because satellites burn up upon reentry and can release harmful metals into the atmosphere, while platform stations can be powered by clean energy sources such as solar and green hydrogen.
The key challenges to practical platform stations are increasing the amount of time they can stay aloft to months at a time, boosting green onboard power and improving reliability – especially during automated takeoff and landing through the lower turbulent layers of the atmosphere.
Beyond satellites
Platform stations could play a critical role in emergency and humanitarian situations by supporting relief efforts when ground-based networks are damaged or inoperative.
The stations could also connect Internet of Things (IoT) devices and sensors in remote settings to better monitor the environment and manage resources.
In agriculture, the stations could use imaging and sensing technologies to help farmers monitor crop health, soil conditions and water resources.
Their capability for high-resolution imaging could also support navigation and mapping activities crucial for cartography, urban planning and disaster response.
The stations could also do double duty by carrying instruments for atmospheric monitoring, climate studies and remote sensing of Earth’s surface features, vegetation and oceans.
From balloons to airplanes
Platform stations could be based on different types of aircraft.
Balloons offer stable, long-duration operation at high altitudes and can be tethered or free-floating. Airships, also known as dirigibles or blimps, use lighter-than-air gases and are larger and more maneuverable than balloons. They’re especially well suited for surveillance, communications and research.
Gliders and powered aircraft can be controlled more precisely than balloons, which are sensitive to variations in wind speed. In addition, powered aircraft, which include drones and fixed-wing airplanes, can provide electricity to communication equipment, sensors and cameras.
Next-generation power
Platform stations could make use of diverse power sources, including increasingly lightweight and efficient solar cells, high-energy-density batteries, green hydrogen internal combustion engines, green hydrogen fuel cells, which are now at the testing stage, and eventually, laser beam powering from ground- or space-based solar stations.
The evolution of lightweight aircraft designs coupled with advancements in high-efficiency motors and propellers enable planes to fly longer and carry heavier payloads. These cutting-edge lightweight planes could lead to platform stations capable of maneuvering in the stratosphere for extended periods.
Meanwhile, improvements in stratospheric weather models and atmospheric models make it easier to predict and simulate the conditions under which the platform stations would operate.
Bridging the global digital divide
Commerical deployment of platform stations, at least for post-disaster or emergency situations, could be in place by the end of the decade. For instance, a consortium in Japan, a country with remote mountainous and island communities, has earmarked US$100 million for solar-powered, high-altitude platform stations.
Platform stations could bridge the digital divide by increasing access to critical services such as education and health care, providing new economic opportunities and improving emergency response and environmental monitoring. As advances in technology continue to drive their evolution, platform stations are set to play a crucial role in a more inclusive and resilient digital future.
Mohamed-Slim Alouini, Distinguished Professor of Electrical and Computer Engineering, King Abdullah University of Science and Technology and Mariette DiChristina, Dean and Professor of the Practice in Journalism, College of Communication, Boston University
This article is republished from The Conversation under a Creative Commons license. Read the original article.
STM Daily News is a vibrant news blog dedicated to sharing the brighter side of human experiences. Emphasizing positive, uplifting stories, the site focuses on delivering inspiring, informative, and well-researched content. With a commitment to accurate, fair, and responsible journalism, STM Daily News aims to foster a community of readers passionate about positive change and engaged in meaningful conversations. Join the movement and explore stories that celebrate the positive impacts shaping our world.
Discover more from Daily News
Subscribe to get the latest posts sent to your email.
-
Urbanism1 year ago
Signal Hill, California: A Historic Enclave Surrounded by Long Beach
-
News2 years ago
Diana Gregory Talks to us about Diana Gregory’s Outreach Services
-
Senior Pickleball Report2 years ago
The Absolute Most Comfortable Pickleball Shoe I’ve Ever Worn!
-
STM Blog2 years ago
World Naked Gardening Day: Celebrating Body Acceptance and Nature
-
Senior Pickleball Report2 years ago
ACE PICKLEBALL CLUB TO DEBUT THEIR HIGHLY ANTICIPATED INDOOR PICKLEBALL FRANCHISES IN THE US, IN EARLY 2023
-
Travel2 years ago
Unique Experiences at the CitizenM
-
Automotive2 years ago
2023 Nissan Sentra pricing starts at $19,950
-
Senior Pickleball Report2 years ago
“THE PEOPLE’S CHOICE AWARDS OF PICKLEBALL” – VOTING OPEN