Visit the Zero Energy Homes of U.S. Department of Energy Solar Decathlon® 2023 Build Challenge Collegiate Teams Today!”
Photo courtesy of the University of British Columbia.
Sustainable Living
The U.S. Department of Energy Solar Decathlon® 2023 Build Challenge is well underway, and if you’re interested in sustainable living, now is the perfect time to visit one of the participating homes. From now until April 18th, the collegiate teams behind the competition are opening their doors to the public, offering a unique opportunity to see zero energy homes in action.
These homes are nothing short of remarkable. They’re designed to be high-performance, low-carbon, and zero energy, which means they generate as much energy as they consume. This is achieved through a combination of advanced building materials, innovative design features, and cutting-edge technology.
But these homes aren’t just impressive from a technical standpoint – they’re also beautiful, functional, and livable. Each team has put their own unique spin on the zero energy home concept, creating houses that are tailored to their local environment and the needs of their occupants.
Locations of the 2023 Build Challenge teams and houses.
By visiting one of these homes, you’ll get a firsthand look at what sustainable living can look like. You’ll see how solar panels, geothermal heating and cooling systems, and other green technologies can be seamlessly integrated into a modern, comfortable home. And you’ll get a sense of how small changes in your lifestyle can make a big impact on the environment.
But perhaps most importantly, you’ll be supporting a new generation of innovators and designers who are working hard to create a more sustainable future. The Solar Decathlon® Build Challenge is a showcase for the best and brightest minds in sustainable design, and by visiting one of the homes, you’ll be able to see their work up close and personal.
So if you’re looking for a fun and educational way to spend a weekend, consider visiting a Solar Decathlon zero energy home near you. You won’t be disappointed!
One of two main craters on Alaska’s Mount Spurr, shown in 1991. Earthquake activity suggests the volcano is close to erupting again in 2025.
R.G. McGimsey/Alaska Volcano Observatory/U.S. Geological Survey, CC BYDavid Kitchen, University of Richmond
Volcanoes inspire awe with spectacular eruptions and incandescent rivers of lava, but often their deadliest hazard is what quietly falls from the sky.
When a large volcano erupts, as Mount Spurr appears close to doing about 80 miles from Anchorage, Alaska, it can release enormous volumes of ash. Fine ash can infiltrate the lungs of people and animals who breathe it in, poison crops and disrupt aquatic life. Thick deposits of ash can collapse roofs, cripple utilities and disrupt transport networks.
Ash may lack the visual impact of flowing lava, but as a geologist who studies disasters, I’m aware that ash travels farther, lasts longer and leaves deep scars.
Ash buried cars and buildings after the 1984 eruption of Rabaul in Papua New Guinea.Volcano Hazards Program, U.S. Geological Survey
Volcanic ash: What it is, and why it matters
Volcanic ash forms when viscous magma – molten rock from deep beneath Earth’s surface – erupts, exploding into shards of rock, mineral and glass carried in a near-supersonic stream of hot gas.
Towering clouds of ash rise several miles into the atmosphere, where the ash is captured by high-altitude winds that can carry it hundreds or even thousands of miles.
As the volcanic ash settles back to Earth, it accumulates in layers that typically decrease in thickness with distance from the eruption source. Near the vent, the ash may be several feet deep, but communities farther away may see only a dusting.
When Mount Spurr erupted in 1992, a dark column of ash and gas shot into the atmosphere from the volcano’s Crater Peak vent. Wind patterns determine where the ash will fall.U.S. Geological Survey
Breathing danger: Health risks from ash
Breathing volcanic ash can irritate the throat and lungs, trigger asthma attacks and aggravate chronic respiratory conditions such as COPD.
The finest particles pose the greatest risk because they can penetrate deep into the lungs and cause death by asphyxiation in the worst cases. Mild, short-term symptoms often resolve with rest. However, the long-term consequences of ash exposure can include silicosis, a lung disease and a possible cause of cancer.
The danger increases in dry regions where fallen ash can be kicked up into the air again by wind or human activity.
Risks to pets and livestock
Humans aren’t the only ones at risk. Animals experience similar respiratory symptoms to humans.
Domestic pets can develop respiratory distress, eye inflammation and paw irritation from exposure to ash.
Ash covers sheep in Argentina after the 2011 Puyehue volcanic eruption in Chile.Federico Grosso/U.S. Geological Survey
Livestock face greater dangers. If grazing animals eat volcanic ash, it can damage their teeth, block their intestines and poison them.
During the 2010 Eyjafjallajökull eruption in Iceland, farmers were advised to shelter sheep and cattle because the ash contained fluoride concentrations above the recognized safety threshold of 400 parts per million. Animals that remained exposed became sick and some died.
Harm to crops, soil and water
Soil and crops can also be damaged. Volcanic ash alters the acidity of soil and introduces harmful elements such as arsenic and sulfur into the environment.
While the ash can add nutrients such as potassium and phosphorus that enhance fertility, the immediate impact is mostly harmful.
Ash can smother crops, block sunlight and clog the tiny stomata, or pores, in leaves that allow plants to exchange gases with the atmosphere. It can also introduce toxins that render food unmarketable. Vegetables, fruit trees and vines are particularly vulnerable, but even sturdy cereals and grasses can die if ash remains on leaves or poisons emerging shoots.
Following the 1991 Mount Pinatubo eruption, vast tracts of farmland in central Luzon in the Philippines were rendered unproductive for years due to acidic ash and buried topsoil. If multiple ashfalls occur in a growing season, crop failure becomes a near certainty. It was the cause of a historic famine that followed the eruption of Mount Tambora in 1815.
Ash from a 1953 eruption of Mount Spurr included very fine grains, like powder. The ash cloud reached about 70,000 feet high and left Anchorage under a blanket of ash up to a quarter-inch deep, according to a U.S. Geological Survey report at the time.James St. John via Wikimedia Commons, CC BYElectron microscope images of ash show how sharp the shards are. The top left image of shards from Mount Etna in 2002 is 1 mm across. Top right is an ash particle from Mount St. Helens magnified 200 times. The shards in the lower images are less than 0.064 mm.Volcano Hazards Program, U.S. Geological Survey
Ash can also contaminate surface water by introducing toxins and increasing the water’s acidity. The toxins can leach into groundwater, contaminating wells. Fine ash particles can also settle in waterways and smother aquatic plants and animals. During the 2008 Chaitén eruption in Chile, ash contamination led to widespread fish deaths in the Río Blanco.
Ash can ground airplanes, gum up infrastructure
Ash clouds are extremely dangerous to aircraft. The glassy ash particles melt when sucked into jet turbines, clog fuel systems and can stall engines in midair.
In 1982, British Airways Flight 9 lost power in all four engines after flying through an ash cloud. A similar incident occurred in 1989 to KLM Flight 867 over Alaska. In 2010, Iceland’s Eyjafjallajökull eruption grounded more than 100,000 flights across Europe, disrupting travel for over 10 million passengers and costing the global economy billions of dollars.
Volcanic ash can also wreak havoc on infrastructure by clogging water supplies, short-circuiting electrical systems and collapsing roofs under its weight. It can disrupt transportation, communication, rescue and power networks, as the 1991 eruption of Mount Pinatubo in the Philippines dramatically demonstrated.
What to do during ashfall
During an ashfall event, the most effective strategy to stay safe is to stay indoors as much as possible and avoid inhaling ash particles.
Anyone who must go outside should wear a properly fitted N95 or P2 mask. Cloth masks provide little protection against fine ash. Rainwater tanks, troughs and open wells should be covered and monitored for contamination. Livestock should be moved to clean pastures or given uncontaminated fodder.
The challenges Alaska is facing if Mount Spurr erupts.
To reduce structural damage, ash should be cleared from roofs and gutters promptly, especially before rainfall.
Older adults, children and people who are sick are at greatest risk, particularly those living in poorly ventilated homes. Rural communities that are dependent on agriculture and livestock are disproportionately affected by ashfall, as are low-income people who lack access to clean water, protective masks or safe shelter.
Communities can stay informed about ash risks through official alerts, including those from the Volcanic Ash Advisory Centers, which monitor ash dispersion and issue timely warnings. The International Volcanic Health Hazard Network also offers guidelines on personal protection, emergency planning and ash cleanup.
The long tail of ash
Volcanic ash may fall quietly, but its effects are widespread, persistent and potentially deadly. It poses a chronic threat to health, agriculture, infrastructure and aquatic systems.
Recognizing the risk is a crucial first step to protecting lives. Effective planning and public awareness can further help reduce the damage.
David Kitchen, Associate Professor of Geology, University of Richmond
This article is republished from The Conversation under a Creative Commons license. Read the original article.
The 6.9 magnitude Loma Prieta earthquake near San Francisco in 1989 caused about $6.8 billion in damage and 63 deaths.
J.K. Nakata/U.S. Geological SurveyJonathan P. Stewart, University of California, Los Angeles and Lucy Arendt, St. Norbert College
Earthquakes and the damage they cause are apolitical. Collectively, we either prepare for future earthquakes or the population eventually pays the price. The earthquakes that struck Myanmar on March 28, 2025, collapsing buildings and causing more than 3,000 deaths, were a sobering reminder of the risks and the need for preparation.
In the U.S., this preparation hinges in large part on the expertise of scientists and engineers in federal agencies who develop earthquake hazard models and contribute to the creation of building codes designed to ensure homes, high-rises and other structures won’t collapse when the ground shakes.
Local communities and states decide whether to adopt building code documents. But those documents and other essential resources are developed through programs supported by federal agencies working in partnership with practicing engineers and earthquake experts at universities.
This essential federal role is illustrated by two programs that we work closely with as an earthquake engineer and a disaster management expert whose work focuses on seismic risk.
Improving building codes
First, seismologists and earthquake engineers at the U.S. Geological Survey, or USGS, produce the National Seismic Hazard Model. These maps, based on research into earthquake sources such as faults and how seismic waves move through the earth’s crust, are used to determine the forces that structures in each community should be designed to resist.
A steering committee of earthquake experts from the private sector and universities works with USGS to ensure that the National Seismic Hazard Model implements the best available science.
In this 2023 update of the national seismic risk map, red areas have the greatest chance of a damaging earthquake occurring within 100 years.USGS
Second, the Federal Emergency Management Agency, FEMA, supports the process for periodically updating building codes. That includes supporting the work of the National Institute of Building Sciences’ Provisions Update Committee, which recommends building code revisions based on investigations of earthquake damage.
More broadly, FEMA, the USGS, the National Institute of Standards and Technology and the National Science Foundation work together through the National Earthquake Hazards Reduction Program to advance earthquake science and turn knowledge of earthquake risks into safer standards, better building design and education. Some of those agencies have been threatened by potential job and funding cuts under the Trump administration, and others face uncertainty regarding continuation of federal support for their work.
It is in large part because of the National Seismic Hazard Model and regularly updated building codes that U.S. buildings designed to meet modern code requirements are considered among the safest in the world, despite substantial seismic hazards in several states.
This paradigm has been made possible by the technical expertise and lack of political agendas among the federal staff. Without that professionalism, we believe experts from outside the federal government would be less likely to donate their time.
The impacts of these and other programs are well documented. We can point to the limited fatalities from U.S. earthquakes such as the 1989 Loma Prieta earthquake near San Francisco, the 1994 Northridge earthquake in Los Angeles and the 2001 Nisqually earthquake near Seattle. Powerful earthquakes in countries lacking seismic preparedness, often due to lack of adoption or enforcement of building codes, have produced much greater devastation and loss of life.
The US has long relied on people with expertise
These programs and the federal agencies supporting them have benefited from a high level of staff expertise because hiring and advancement processes have been divorced from politics and focused on qualifications and merit.
This has not always been the case.
For much of early U.S. history, federal jobs were awarded through a patronage system, where political loyalty determined employment. As described in “The Federal Civil Service System and The Problem of Bureaucracy,” this system led to widespread corruption and dysfunction, with officials focused more on managing quid pro quo patronage than governing effectively. That peaked in 1881 with President James Garfield’s assassination by Charles Guiteau, a disgruntled supporter who had been denied a government appointment.
The passage of the Pendleton Act by Congress in 1883 shifted federal employment to a merit-based system. This preference for a merit-based system was reinforced in the Civil Service Reform Act of 1978. It states as national policy that “to provide the people of the United States with a competent, honest, and productive workforce … and to improve the quality of public service, Federal personnel management should be implemented consistent with merit system principles.”
The shift away from a patronage system produced a more stable and efficient federal workforce, which has enabled improvements in many critical areas, including seismic safety and disaster response.
Merit-based civil service matters for safety
While the work of these federal employees often goes unnoticed, the benefits are demonstrable and widespread. That becomes most apparent when disasters strike and buildings that meet modern code requirements remain standing.
A merit-based civil service is not just a democratic ideal but a proven necessity for the safety and security of the American people, one we hope will continue well into the future. This can be achieved by retaining federal scientists and engineers and supporting the essential work of federal agencies.
This article, originally published March 31, 2025, has been updated with the rising death toll in Myanamar.Jonathan P. Stewart, Professor of Engineering, University of California, Los Angeles and Lucy Arendt, Professor of Business Administration Management, St. Norbert College
This article is republished from The Conversation under a Creative Commons license. Read the original article.
Did James Webb Find Life on a Distant Planet Recently?
Recent findings from the James Webb Space Telescope suggest potential biosignatures on exoplanet K2-18b, including dimethyl sulfide, indicating possible microbial life, though further research is necessary.
James Webb Space Telescope mission observing universe. This image elements furnished by NASA
While the answer to that question is not a definitive “yes,” recent findings from the James Webb Space Telescope (JWST) are providing what scientists are calling the “strongest evidence yet” of potential life on an exoplanet, specifically K2-18b. This discovery opens a new frontier in our understanding of the universe and the possibility of life beyond Earth.
The Discovery
A dedicated team of astronomers recently utilized the powerful capabilities of the JWST to analyze the atmosphere of K2-18b, a super-Earth exoplanet located an incredible 124 light-years away from our planet. Their findings have revealed chemical signatures in the atmosphere that warrant further investigation.
The Biosignature
Among the intriguing detections was dimethyl sulfide (DMS) and potentially dimethyl disulfide (DMDS). These compounds are significant because, on Earth, they are predominantly produced by living organisms, with marine microbes being the primary source. The presence of these chemicals in K2-18b’s atmosphere suggests the potential for biological processes at work.
The Context
DMS is primarily emitted by marine phytoplankton, a crucial element of oceanic ecosystems. The detection of DMS in the atmosphere of K2-18b is interpreted as a potential indicator of microbial life, potentially thriving in an ocean on the planet. This tantalizing prospect encourages scientists to contemplate the types of ecosystems that could flourish far beyond Earth.
Caution
However, it is essential to approach these findings with the appropriate level of caution. While the presence of these compounds is compelling, scientists emphasize that this does not serve as definitive confirmation of life. Further observations and rigorous analyses are necessary to rule out other non-biological explanations for the presence of DMS and DMDS in K2-18b’s atmosphere.
Significance
This detection represents a significant leap forward in the ongoing quest to uncover extraterrestrial life. It is the first time scientists have successfully identified potential biosignatures on an exoplanet using advanced astronomical technology. This marks a pivotal moment in astrobiology, helping to narrow the focus of future exploration.
Future Research
The JWST will continue to play a vital role in studying K2-18b, as well as other exoplanets, in the relentless pursuit of knowledge about life in the cosmos. Ongoing research will seek to deepen our understanding and potentially corroborate these exciting initial findings.
In conclusion, while the James Webb Space Telescope has not definitively found life on K2-18b, the detection of biosignatures in its atmosphere represents a groundbreaking step in humanity’s exploration of worlds beyond our own. As scientists push forward, we stand on the brink of potentially transformative discoveries that could change our understanding of life in the universe. Stay tuned for further updates as we journey into the stars!
The science section of our news blog, STM Daily News, provides readers with captivating and up-to-date information on the latest scientific discoveries, breakthroughs, and innovations across various fields. We offer engaging and accessible content, ensuring that readers with different levels of scientific knowledge can stay informed. Whether it’s exploring advancements in medicine, astronomy, technology, or environmental sciences, our science section strives to shed light on the intriguing world of scientific exploration and its profound impact on our daily lives. From thought-provoking articles to informative interviews with experts in the field, STM Daily News Science offers a harmonious blend of factual reporting, analysis, and exploration, making it a go-to source for science enthusiasts and curious minds alike. https://stmdailynews.com/category/science/
Privacy & Cookies: This site uses cookies. By continuing to use this website, you agree to their use.
To find out more, including how to control cookies, see here:
Cookie Policy