5 Sustainable Agriculture Practices for Long-Term Success
Implementing sustainable practices aimed at sequestering carbon, or carbon farming, can help farmers and ranchers increase their bottom line while managing environmental impact in numerous ways, including keeping the soil covered year-round, reducing or eliminating tillage and effectively managing range and pasture lands.
(Family Features) Implementing sustainable practices aimed at sequestering carbon, or carbon farming, can help farmers and ranchers increase their bottom line while managing environmental impact in numerous ways, including keeping the soil covered year-round, reducing or eliminating tillage, and managing range and pasture lands. Carbon farming practices help farmers and ranchers reap the proven benefits of a conservation approach. That, combined with a new revenue stream available via voluntary carbon programs, offers the potential for better outcomes.
Of the Earth’s land surface, 38% is used for agriculture. Capturing carbon in the soil is an affordable and scalable way to cut greenhouse gas emissions in the atmosphere while nurturing healthy, secure and sustainable food systems. Through soil carbon sequestration, farmers and ranchers can become leaders in limiting the effects of climate change while enriching the land’s livelihood.
Implementing practices that meet operational needs, and ultimately sequester carbon to generate carbon credits, allows ranchers and farmers to create additional income, lower future management costs and improve soil health, resulting in enhanced yields, cost savings and more resilient, healthy fields and pastures.
Working closely with farmers and ranchers across the United States, Agoro Carbon Alliance helps implement sustainable practices like these, which bolster natural soil fertility and can also generate carbon credits and new revenue streams.
No-Till and Reduced-Till Farming: Reducing or eliminating tillage minimizes disruption to the soil and reduces carbon emissions. When soil is tilled, it releases carbon stored within the ground into the atmosphere. Moving an operation to reduced till or no-till practices not only offers benefits to soil quality but can also play a role in mitigating soil erosion, as well as reducing fuel and labor costs.
Cover Crops: Cover crops improve soil health and help keep carbon “locked in” while preventing nutrient loss and erosion in fields. Developing an effective and profitable cover crop strategy is one way farmers partner with Agoro Carbon Alliance. Backed by a team of highly trained agronomists that collaborate with producers, their team of local agronomists work one-on-one with producers to build a cover crop strategy that best suits each unique operation and keeps soil thriving year-round.
Interseeding: A related and valuable approach to soil protection and carbon sequestration is interseeding. This occurs when a new crop is planted as a cover or companion in a field where an existing crop has reached vegetative growth. Interseeding increases the number of plants in the soil, resulting in more roots, which promote more efficient biomass and carbon sequestration.
Rotational Grazing and Grazing Management: Controlling livestock grazing patterns can be advantageous for animal health, as well as the soil and pasture quality. Moving animals from one pasture to another on a systematic basis provides greater control over the quality of the forage, allowing plants to deepen root systems, which enhances the soil’s biomass and supports more efficient carbon sequestration. Rotational grazing also prevents the soil from becoming excessively compacted by animal movement and allows ranchers to distribute natural manure fertilization more evenly.
Nitrogen Management: Strategically managing how and when nitrogen fertilizer is applied can both increase crop efficiency and yield potential while reducing environmental impacts associated with nitrogen fertilizers. Judicious use of nitrogen-containing fertilizers can help optimize carbon storage, boost yield potential and improve forage.
Soil conservation practices can drive productivity and add a new revenue stream for farm and ranch operations, as well as generate carbon credits. Learn more about sustainable agriculture and carbon cropping at agorocarbonalliance.com.
Our Lifestyle section on STM Daily News is a hub of inspiration and practical information, offering a range of articles that touch on various aspects of daily life. From tips on family finances to guides for maintaining health and wellness, we strive to empower our readers with knowledge and resources to enhance their lifestyles. Whether you’re seeking outdoor activity ideas, fashion trends, or travel recommendations, our lifestyle section has got you covered. Visit us today at https://stmdailynews.com/category/lifestyle/ and embark on a journey of discovery and self-improvement.
Rod: A creative force, blending words, images, and flavors. Blogger, writer, filmmaker, and photographer. Cooking enthusiast with a sci-fi vision. Passionate about his upcoming series and dedicated to TNC Network. Partnered with Rebecca Washington for a shared journey of love and art.
One of two main craters on Alaska’s Mount Spurr, shown in 1991. Earthquake activity suggests the volcano is close to erupting again in 2025.
R.G. McGimsey/Alaska Volcano Observatory/U.S. Geological Survey, CC BYDavid Kitchen, University of Richmond
Volcanoes inspire awe with spectacular eruptions and incandescent rivers of lava, but often their deadliest hazard is what quietly falls from the sky.
When a large volcano erupts, as Mount Spurr appears close to doing about 80 miles from Anchorage, Alaska, it can release enormous volumes of ash. Fine ash can infiltrate the lungs of people and animals who breathe it in, poison crops and disrupt aquatic life. Thick deposits of ash can collapse roofs, cripple utilities and disrupt transport networks.
Ash may lack the visual impact of flowing lava, but as a geologist who studies disasters, I’m aware that ash travels farther, lasts longer and leaves deep scars.
Ash buried cars and buildings after the 1984 eruption of Rabaul in Papua New Guinea.Volcano Hazards Program, U.S. Geological Survey
Volcanic ash: What it is, and why it matters
Volcanic ash forms when viscous magma – molten rock from deep beneath Earth’s surface – erupts, exploding into shards of rock, mineral and glass carried in a near-supersonic stream of hot gas.
Towering clouds of ash rise several miles into the atmosphere, where the ash is captured by high-altitude winds that can carry it hundreds or even thousands of miles.
As the volcanic ash settles back to Earth, it accumulates in layers that typically decrease in thickness with distance from the eruption source. Near the vent, the ash may be several feet deep, but communities farther away may see only a dusting.
When Mount Spurr erupted in 1992, a dark column of ash and gas shot into the atmosphere from the volcano’s Crater Peak vent. Wind patterns determine where the ash will fall.U.S. Geological Survey
Breathing danger: Health risks from ash
Breathing volcanic ash can irritate the throat and lungs, trigger asthma attacks and aggravate chronic respiratory conditions such as COPD.
The finest particles pose the greatest risk because they can penetrate deep into the lungs and cause death by asphyxiation in the worst cases. Mild, short-term symptoms often resolve with rest. However, the long-term consequences of ash exposure can include silicosis, a lung disease and a possible cause of cancer.
The danger increases in dry regions where fallen ash can be kicked up into the air again by wind or human activity.
Risks to pets and livestock
Humans aren’t the only ones at risk. Animals experience similar respiratory symptoms to humans.
Domestic pets can develop respiratory distress, eye inflammation and paw irritation from exposure to ash.
Ash covers sheep in Argentina after the 2011 Puyehue volcanic eruption in Chile.Federico Grosso/U.S. Geological Survey
Livestock face greater dangers. If grazing animals eat volcanic ash, it can damage their teeth, block their intestines and poison them.
During the 2010 Eyjafjallajökull eruption in Iceland, farmers were advised to shelter sheep and cattle because the ash contained fluoride concentrations above the recognized safety threshold of 400 parts per million. Animals that remained exposed became sick and some died.
Harm to crops, soil and water
Soil and crops can also be damaged. Volcanic ash alters the acidity of soil and introduces harmful elements such as arsenic and sulfur into the environment.
While the ash can add nutrients such as potassium and phosphorus that enhance fertility, the immediate impact is mostly harmful.
Ash can smother crops, block sunlight and clog the tiny stomata, or pores, in leaves that allow plants to exchange gases with the atmosphere. It can also introduce toxins that render food unmarketable. Vegetables, fruit trees and vines are particularly vulnerable, but even sturdy cereals and grasses can die if ash remains on leaves or poisons emerging shoots.
Following the 1991 Mount Pinatubo eruption, vast tracts of farmland in central Luzon in the Philippines were rendered unproductive for years due to acidic ash and buried topsoil. If multiple ashfalls occur in a growing season, crop failure becomes a near certainty. It was the cause of a historic famine that followed the eruption of Mount Tambora in 1815.
Ash from a 1953 eruption of Mount Spurr included very fine grains, like powder. The ash cloud reached about 70,000 feet high and left Anchorage under a blanket of ash up to a quarter-inch deep, according to a U.S. Geological Survey report at the time.James St. John via Wikimedia Commons, CC BYElectron microscope images of ash show how sharp the shards are. The top left image of shards from Mount Etna in 2002 is 1 mm across. Top right is an ash particle from Mount St. Helens magnified 200 times. The shards in the lower images are less than 0.064 mm.Volcano Hazards Program, U.S. Geological Survey
Ash can also contaminate surface water by introducing toxins and increasing the water’s acidity. The toxins can leach into groundwater, contaminating wells. Fine ash particles can also settle in waterways and smother aquatic plants and animals. During the 2008 Chaitén eruption in Chile, ash contamination led to widespread fish deaths in the Río Blanco.
Ash can ground airplanes, gum up infrastructure
Ash clouds are extremely dangerous to aircraft. The glassy ash particles melt when sucked into jet turbines, clog fuel systems and can stall engines in midair.
In 1982, British Airways Flight 9 lost power in all four engines after flying through an ash cloud. A similar incident occurred in 1989 to KLM Flight 867 over Alaska. In 2010, Iceland’s Eyjafjallajökull eruption grounded more than 100,000 flights across Europe, disrupting travel for over 10 million passengers and costing the global economy billions of dollars.
Volcanic ash can also wreak havoc on infrastructure by clogging water supplies, short-circuiting electrical systems and collapsing roofs under its weight. It can disrupt transportation, communication, rescue and power networks, as the 1991 eruption of Mount Pinatubo in the Philippines dramatically demonstrated.
What to do during ashfall
During an ashfall event, the most effective strategy to stay safe is to stay indoors as much as possible and avoid inhaling ash particles.
Anyone who must go outside should wear a properly fitted N95 or P2 mask. Cloth masks provide little protection against fine ash. Rainwater tanks, troughs and open wells should be covered and monitored for contamination. Livestock should be moved to clean pastures or given uncontaminated fodder.
The challenges Alaska is facing if Mount Spurr erupts.
To reduce structural damage, ash should be cleared from roofs and gutters promptly, especially before rainfall.
Older adults, children and people who are sick are at greatest risk, particularly those living in poorly ventilated homes. Rural communities that are dependent on agriculture and livestock are disproportionately affected by ashfall, as are low-income people who lack access to clean water, protective masks or safe shelter.
Communities can stay informed about ash risks through official alerts, including those from the Volcanic Ash Advisory Centers, which monitor ash dispersion and issue timely warnings. The International Volcanic Health Hazard Network also offers guidelines on personal protection, emergency planning and ash cleanup.
The long tail of ash
Volcanic ash may fall quietly, but its effects are widespread, persistent and potentially deadly. It poses a chronic threat to health, agriculture, infrastructure and aquatic systems.
Recognizing the risk is a crucial first step to protecting lives. Effective planning and public awareness can further help reduce the damage.
David Kitchen, Associate Professor of Geology, University of Richmond
This article is republished from The Conversation under a Creative Commons license. Read the original article.
Regulations have cleaned up cars, power plants and factories, leaving cleaner air while economies have grown.
Cavan Images/Josh Campbell via Getty ImagesRichard E. Peltier, UMass Amherst
The Trump administration is “reconsidering” more than 30 air pollution regulations, and it offered industries a brief window to apply for exemptions that would allow them to stop following many air quality regulations immediately if approved. All of the exemptions involve rules finalized in 2024 and include regulations for hazardous air pollutants that cause asthma, heart disease and cancer.
The results – if regulations are ultimately rolled back and if those rollbacks and any exemptions stand up to court challenges – could impact air quality across the United States.
“Reconsideration” is a term used to review or modify a government regulation. While Environmental Protection Agency Administrator Lee Zeldin provided few details, the breadth of the regulations being reconsidered affects all Americans. They include rules that set limits for pollutants that can harm human health, such as ozone, particulate matter and volatile organic carbon.
Zeldin wrote on March 12, 2025, that his deregulation moves would “roll back trillions in regulatory costs and hidden “taxes” on U.S. families.“
What Zeldin didn’t say is that the economic and health benefits from decades of federal clean air regulations have far outweighed their costs. Some estimates suggest every $1 spent meeting clean air rules has returned $10 in health and economic benefits.
How far America has come, because of regulations
In the early 1970s, thick smog blanketed American cities and acid rain stripped forests bare from the Northeast to the Midwest.
Air pollution wasn’t just a nuisance – it was a public health emergency. But in the decades since, the United States has engineered one of the most successful environmental turnarounds in history.
Thanks to stronger air quality regulations, pollution levels have plummeted, preventing hundreds of thousands of deaths annually. And despite early predictions that these regulations would cripple the economy, the opposite has proven true: The U.S. economy more than doubled in size while pollution fell, showing that clean air and economic growth can – and do – go hand in hand.
The numbers are eye-popping.
An Environmental Protection Agency analysis of the first 20 years of the Clean Air Act, from 1970 to 1990, found the economic benefits of the regulations were about 42 times greater than the costs.
The EPA later estimated that the cost of air quality regulations in the U.S. would be about US$65 billion in 2020, and the benefits, primarily in improved health and increased worker productivity, would be around $2 trillion. Other studies have found similar benefits.
That’s a return of more than 30 to 1, making clean air one of the best investments the country has ever made.
Science-based regulations even the playing field
The turning point came with the passage of the Clean Air Act of 1970, which put in place strict rules on pollutants from industry, vehicles and power plants.
These rules targeted key culprits: lead, ozone, sulfur dioxide, nitrogen oxides and particulate matter – substances that contribute to asthma, heart disease and premature deaths. An example was the removal of lead, which can harm the brain and other organs, from gasoline. That single change resulted in far lower levels of lead in people’s blood, including a 70% drop in U.S. children’s blood-lead levels.
Air Quality regulations lowered the amount of lead being used in gasoline, which also resulted in rapidly declining lead concentrations in the average American between 1976-1980. This shows us how effective regulations can be at reducing public health risks to people.USEPA/Environmental Criteria and Assessment Office (1986)
The results have been extraordinary. Since 1980, emissions of six major air pollutants have dropped by 78%, even as the U.S. economy has more than doubled in size. Cities that were once notorious for their thick, choking smog – such as Los Angeles, Houston and Pittsburgh – now see far cleaner air, while lakes and forests devastated by acid rain in the Northeast have rebounded.
Comparison of growth areas and declining emissions, 1970-2023.EPA
And most importantly, lives have been saved. The Clean Air Act requires the EPA to periodically estimate the costs and benefits of air quality regulations. In the most recent estimate, released in 2011, the EPA projected that air quality improvements would prevent over 230,000 premature deaths in 2020. That means fewer heart attacks, fewer emergency room visits for asthma, and more years of healthy life for millions of Americans.
The economic payoff
Critics of air quality regulations have long argued that the regulations are too expensive for businesses and consumers. But the data tells a very different story.
EPA studies have confirmed that clean air regulations improve air quality over time. Other studies have shown that the health benefits greatly outweigh the costs. That pays off for the economy. Fewer illnesses mean lower health care costs, and healthier workers mean higher productivity and fewer missed workdays.
The EPA estimated that for every $1 spent on meeting air quality regulations, the United States received $9 in benefits. A separate study by the non-partisan National Bureau of Economic Research in 2024 estimated that each $1 spent on air pollution regulation brought the U.S. economy at least $10 in benefits. And when considering the long-term impact on human health and climate stability, the return is even greater.
Hollywood and downtown Los Angeles in 1984: Smog was a common problem in the 1970s and 1980s.Ian Dryden/Los Angeles Times/UCLA Archive/Wikimedia Commons, CC BY
The next chapter in clean air
The air Americans breathe today is cleaner, much healthier and safer than it was just a few decades ago.
Yet, despite this remarkable progress, air pollution remains a challenge in some parts of the country. Some urban neighborhoods remain stubbornly polluted because of vehicle emissions and industrial pollution. While urban pollution has declined, wildfire smoke has become a larger influence on poor air quality across the nation.
That means the EPA still has work to do.
If the agency works with environmental scientists, public health experts and industry, and fosters honest scientific consensus, it can continue to protect public health while supporting economic growth. At the same time, it can ensure that future generations enjoy the same clean air and prosperity that regulations have made possible.
By instead considering retracting clean air rules, the EPA is calling into question the expertise of countless scientists who have provided their objective advice over decades to set standards designed to protect human lives. In many cases, industries won’t want to go back to past polluting ways, but lifting clean air rules means future investment might not be as protective. And it increases future regulatory uncertainty for industries.
The past offers a clear lesson: Investing in clean air is not just good for public health – it’s good for the economy. With a track record of saving lives and delivering trillion-dollar benefits, air quality regulations remain one of the greatest policy success stories in American history.
This article, originally published March 12, 2025, has been updated with the administration’s offer of exemptions for industries.Richard E. Peltier, Professor of Environmental Health Sciences, UMass Amherst
This article is republished from The Conversation under a Creative Commons license. Read the original article.
How many types of insects are there in the world? – Sawyer, age 8, Fuquay-Varina, North Carolina
Exploring anywhere on Earth, look closely and you’ll find insects. Check your backyard and you may see ants, beetles, crickets, wasps, mosquitoes and more. There are more kinds of insects than there are mammals, birds and plants combined. This fact has fascinated scientists for centuries.
One of the things biologists like me do is classify all living things into categories. Insects belong to a phylum called Arthropoda – animals with hard exoskeletons and jointed feet.
All insects are arthropods, but not all arthropods are insects. For instance, spiders, lobsters and millipedes are arthropods, but they’re not insects.
Instead, insects are a subgroup within Arthropoda, a class called “Insecta,” that is characterized by six legs, two antennae and three body segments – head, abdomen and the thorax, which is the part of the body between the head and abdomen.
The mandibles of the ants are its jaws; the petiole is the ant’s waist.Vector Mine/iStock via Getty Images Plus
Most insects also have wings, although a few, like fleas, don’t. All have compound eyes, which means insects see very differently from the way people see. Instead of one lens per eye, they have many: a fly has 5,000 lenses; a dragonfly has 30,000. These types of eyes, though not great for clarity, are excellent at detecting movement.
What is a species?
All insects descend from a common ancestor that lived about about 480 million years ago. For context, that’s about 100 million years before any of our vertebrate ancestors – animals with a backbone – ever walked on land.
A species is the most basic unit that biologists use to classify living things. When people use words like “ant” or “fly” or “butterfly” they are referring not to species, but to categories that may contain hundreds, thousands or tens of thousands of species. For example, about 18,000 species of butterfly exist – think monarch, zebra swallowtail or cabbage white.
Basically, species are a group that can interbreed with each other, but not with other groups. One obvious example: bees can’t interbreed with ants.
But brown-belted bumblebees and red-belted bumblebees can’t interbreed either, so they are different species of bumblebee.
Each species has a unique scientific name – like Bombus griseocollis for the brown-belted bumblebee – so scientists can be sure which species they’re talking about.
This is what a dragonfly looks like up close.Dieter Meyrl/E+ via Getty Images
Quadrillions of ants
Counting the exact number of insect species is probably impossible. Every year, some species go extinct, while some evolve anew. Even if we could magically freeze time and survey the entire Earth all at once, experts would disagree on the distinctiveness or identity of some species. So instead of counting, researchers use statistical analysis to make an estimate.
One scientist did just that. He published his answer in a 2018 research paper. His calculations showed there are approximately 5.5 million insect species, with the correct number almost certainly between 2.6 and 7.2 million.
Beetles alone account for almost one-third of the number, about 1.5 million species. By comparison, there are “only” an estimated 22,000 species of ants. This and other studies have also estimated about 3,500 species of mosquitoes, 120,000 species of flies and 30,000 species of grasshoppers and crickets.
The estimate of 5.5 million species of insects is interesting. What’s even more remarkable is that because scientists have found only about 1 million species, that means more than 4.5 million species are still waiting for someone to discover them. In other words, over 80% of the Earth’s insect biodiversity is still unknown.
Add up the total population and biomass of the insects, and the numbers are even more staggering. The 22,000 species of ants comprise about 20,000,000,000,000,000 individuals – that’s 20 quadrillion ants. And if a typical ant weighs about 0.0001 ounces (3 milligrams) – or one ten-thousandth of an ounce – that means all the ants on Earth together weigh more than 132 billion pounds (about 60 billion kilograms).
That’s the equivalent of about 7 million school buses, 600 aircraft carriers or about 20% of the weight of all humans on Earth combined.
For every person on Earth, it’s estimated there are 200 million insects.
Many insect species are going extinct
All of this has potentially huge implications for our own human species. Insects affect us in countless ways. People depend on them for crop pollination, industrial products and medicine. Other insects can harm us by transmitting disease or eating our crops.
Most insects have little to no direct impact on people, but they are integral parts of their ecosystems. This is why entomologists – bug scientists – say we should leave insects alone as much as possible. Most of them are harmless to people, and they are critical to the environment.
It is sobering to note that although millions of undiscovered insect species may be out there, many will go extinct before people have a chance to discover them. Largely due to human activity, a significant proportion of Earth’s biodiversity – including insects – may ultimately be forever lost.
Hello, curious kids! Do you have a question you’d like an expert to answer? Ask an adult to send your question to CuriousKidsUS@theconversation.com. Please tell us your name, age and the city where you live.And since curiosity has no age limit – adults, let us know what you’re wondering, too. We won’t be able to answer every question, but we will do our best.Nicholas Green, Assistant Professor of Biology, Kennesaw State University
This article is republished from The Conversation under a Creative Commons license. Read the original article.
Privacy & Cookies: This site uses cookies. By continuing to use this website, you agree to their use.
To find out more, including how to control cookies, see here:
Cookie Policy