Flooding from hurricanes Helene and Milton inflicted billions of dollars in damage across the Southeast in September and October 2024, pushing buildings off their foundations and undercutting roads and bridges. It also caused dozens of electric vehicles and other battery-powered objects, such as scooters and golf carts, to catch fire.
According to one tally, 11 electric cars and 48 lithium-ion batteries caught fire after exposure to salty floodwater from Helene. In some cases, these fires spread to homes.
When a lithium-ion battery pack bursts into flames, it releases toxic fumes, burns violently and is extremely hard to put out. Frequently, firefighters’ only option is to let it burn out by itself.
Particularly when these batteries are soaked in saltwater, they can become “ticking time bombs,” in the words of Florida State Fire Marshall Jimmy Patronis. That’s because the fire doesn’t always occur immediately when the battery is flooded. According to the National Highway Traffic Safety Administration, about 36 EVs flooded by Hurricane Ian in Florida in 2022 caught fire, including several that were being towed after the storm on flatbed trailers.
Many consumers are unaware of this risk, and lithium-ion batteries are widely used in EVs and hybrid cars, e-bikes and scooters, electric lawnmowers and cordless power tools.
I’m a mechanical engineer and am working to help solve battery safety issues for our increasingly electrified society. Here’s what all owners should know about water and the risk of battery fires: https://www.youtube.com/embed/gWkEGEbpqFc?wmode=transparent&start=10 Emergency responders handle EVs that were immersed in saltwater during Hurricane Ian in Florida in 2022, including some that ignited.
The threat of saltwater
The trigger for lithium-ion battery fires is a process called thermal runaway – a cascading sequence of heat-releasing reactions inside the battery cell.
Advertisement
Under normal operating conditions, the probability of a lithium-ion cell going into thermal runaway is less than 1 in 10 million. But it increases sharply if the cell is subjected to electrical, thermal or mechanical stress, such as short-circuiting, overheating or puncture.
Saltwater is a particular problem for batteries because salt dissolved in water is conductive, which means that electric current readily flows through it. Pure water is not very conductive, but the electrical conductivity of seawater can be more than a thousand times higher than that of fresh water.
All EV battery pack enclosures use gaskets to seal off their internal space from the elements outside. Typically, they have waterproof ratings of IP66 or IP67. While these ratings are high, they do not guarantee that a battery will be watertight when it is immersed for a long period of time – say, over 30 minutes.
Battery packs also have various ports to equalize pressure inside the battery and move electrical power in and out. These can be potential pathways for water to leak into the pack enclosure. Inadequate seal ratings and manufacturing defects can also enable water to find its way into the battery pack if it is immersed.
How water leads to fire
All batteries have two terminals: One is marked positive (+), and the other is marked negative (-). When the terminals are connected to a device that uses electricity to do work, such as a light bulb, chemical reactions occur inside the battery that cause electrons to flow from the negative to the positive terminal. This creates an electric current and releases the energy stored in the battery.
Electrons flow between a battery’s terminals because the chemical reactions inside the battery create different electrical potentials between the two terminals. This difference is also known as voltage. When saltwater comes into contact with metal battery terminals with different electrical potentials, the battery can short-circuit, inducing rapid corrosion and electric arcing, and generating excessive current and heat. The more conductive the liquid is that penetrates the battery pack, the higher the shorting current and rate of corrosion.
Rapid corrosion reactions within the battery pack produce hydrogen and oxygen, corroding away materials from metallic terminals on the positive side of the battery and depositing them onto the negative side. Even after the water drains away, these deposited materials can form solid shorting bridges that remain inside the battery pack, causing a delayed thermal runaway. A fire can start days after the battery is flooded.
Advertisement
Most electric vehicles and plug-in hybrid cars use arrays of lithium-ion batteries like these. DOE
Even a battery pack that is fully discharged isn’t necessarily safe during flooding. A lithium-ion cell, even at 0% state of charge, still has about a three-volt potential difference between its positive and negative terminals, so some current can flow between them. For a battery string with many cells in a series – a typical configuration in electric cars – residual voltage can still be high enough to drive these reactions.
Many scientists, including me and my colleagues, are working to understand the exact sequence of events that can occur in a battery pack after it is exposed to saltwater and lead to thermal runaway. We also are looking for ways to help reduce fire risks from flooded battery packs.
These could include finding better ways to seal the battery packs; using alternative, more corrosion-resistant materials for the battery terminals; and applying waterproof coatings to exposed terminals inside the battery pack.
What EV owners should know
Electric cars are still very safe to drive and own in most circumstances. However, during extreme situations like hurricanes and flooding, it is very important to keep EV battery packs from becoming submerged in water, particularly saltwater. The same is true for other products that contain lithium-ion batteries.
For EVs, this means evacuating cars out of the affected zone or parking them on high ground before flooding occurs. Smaller objects, like e-bikes and power tools, can be moved to upper floors of buildings or stored on high shelves.
If you own an EV that has been submerged in water for hours to days, particularly in saltwater, public safety experts recommend treating it as a fire hazard and placing it on open ground away from other valuable property. Do not attempt to charge or operate it. Contact the manufacturer for an inspection to assess battery damage.
Often, a flooded electric vehicle will need to be towed away for further inspection. However, since thermal runaway can occur well after submersion, the car should not be moved until it has been professionally assessed.
The science section of our news blog STM Daily News provides readers with captivating and up-to-date information on the latest scientific discoveries, breakthroughs, and innovations across various fields. We offer engaging and accessible content, ensuring that readers with different levels of scientific knowledge can stay informed. Whether it’s exploring advancements in medicine, astronomy, technology, or environmental sciences, our science section strives to shed light on the intriguing world of scientific exploration and its profound impact on our daily lives. From thought-provoking articles to informative interviews with experts in the field, STM Daily News Science offers a harmonious blend of factual reporting, analysis, and exploration, making it a go-to source for science enthusiasts and curious minds alike. https://stmdailynews.com/category/science/
As summer approaches, Arizonans are bracing for yet another season of intense heat and unpredictable weather. According to forecasts from NOAA, AccuWeather, and the Old Farmer’s Almanac, summer2025 is shaping up to include above-average temperatures, sporadic monsoon activity, and potential drought conditions.
Above-Average Heat ExpectedNOAA predicts that Arizona will experience higher-than-average temperatures, continuing the warming trend of recent years. Phoenix and other urban areas may see extended stretches of triple-digit heat, making heat safety a top priority for residents.###
Monsoon Outlook AccuWeather forecasts a slightly below-average monsoon season. While Arizona relies on these summer storms for essential rainfall, experts warn of fewer storms, with flash flooding still possible in localized areas. Homeowners should prepare for potential microbursts and dust storms, especially in July and August. ###
Drought Concerns PersistThe Old Farmer’s Almanac suggests that while some areas might see sporadic relief, drought conditions will likely persist across much of the state. Water conservation efforts remain crucial as reservoirs and aquifers continue to face stress.###
Practical Tips for Staying Safe.
Hydration and Cooling: Always carry water and plan outdoor activities during early morning or evening hours.2.
Monsoon Prep: Secure outdoor furniture and prepare an emergency kit for storm-related power outages.3.
Advertisement
Conservation Efforts: Reduce water usage by fixing leaks, using drought-resistant landscaping, and being mindful of daily consumption.###
Looking AheadArizona’s summer 2025 will challenge both residents and visitors with its heat and sporadic weather patterns. Staying informed and proactive can make all the difference in navigating the season safely.What are your favorite ways to beat the Arizona heat? Share your tips in the comments below!
Let me help you enhance the article with proper attribution and related links. First, I’ll search for the NOAA website.
Let me help you enhance the article with proper attribution and related links:
What Will Summer 2025 Be Like in Arizona? Here’s What the Experts Predict
Originally published by AZ Central on May 12, 2025
STM Daily News is a vibrant news blog dedicated to sharing the brighter side of human experiences. Emphasizing positive, uplifting stories, the site focuses on delivering inspiring, informative, and well-researched content. With a commitment to accurate, fair, and responsible journalism, STM Daily News aims to foster a community of readers passionate about positive change and engaged in meaningful conversations. Join the movement and explore stories that celebrate the positive impacts shaping our world.
‘Extraordinary claims require extraordinary evidence’ − an astronomer explains how much evidence scientists need to claim discoveries like extraterrestrial life
The universe is filled with countless galaxies, stars and planets. Astronomers may find life one day, but they will need extraordinary proof.
ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre (CEA Paris-Saclay), G. Anselmi Chris Impey, University of Arizona
The detection of life beyond Earth would be one of the most profound discoveries in the history of science. The Milky Way galaxy alone hosts hundreds of millions of potentially habitable planets. Astronomers are using powerful space telescopes to look for molecular indicators of biology in the atmospheres of the most Earth-like of these planets.
But so far, no solid evidence of life has ever been found beyond the Earth. A paper published in April 2025 claimed to detect a signature of life in the atmosphere of the planet K2-18b. And while this discovery is intriguing, most astronomers – including the paper’s authors – aren’t ready to claim that it means extraterrestrial life exists. A detection of life would be a remarkable development.
The astronomer Carl Sagan used the phrase, “Extraordinary claims require extraordinary evidence,” in regard to searching for alien life. It conveys the idea that there should be a high bar for evidence to support a remarkable claim.
I’m an astronomer who has written a book about astrobiology. Over my career, I’ve seen some compelling scientific discoveries. But to reach this threshold of finding life beyond Earth, a result needs to fit several important criteria.
When is a result important and reliable?
There are three criteria for a scientific result to represent a true discovery and not be subject to uncertainty and doubt. How does the claim of life on K2-18b measure up?
First, the experiment needs to measure a meaningful and important quantity. Researchers observed K2-18b’s atmosphere with the James Webb Space Telescope and saw a spectral feature that they identified as dimethyl sulfide.
On Earth, dimethyl sulfide is associated with biology, in particular bacteria and plankton in the oceans. However, it can also arise by other means, so this single molecule is not conclusive proof of life.
Second, the detection needs to be strong. Every detector has some noise from the random motion of electrons. The signal should be strong enough to have a low probability of arising by chance from this noise.
The K2-18b detection has a significance of 3-sigma, which means it has a 0.3% probability of arising by chance.
That sounds low, but most scientists would consider that a weak detection. There are many molecules that could create a feature in the same spectral range.
The “gold standard” for scientific detection is 5-sigma, which means the probability of the finding happening by chance is less than 0.00006%. For example, physicists at CERN gathered data patiently for two years until they had a 5-sigma detection of the Higgs boson particle, leading to a Nobel Prize one year later in 2013.
The announcement of the discovery of the Higgs boson took decades from the time Peter Higgs first predicted the existence of the particle. Scientists, such as Joe Incandela shown here, waited until they’d reached that 5-sigma level to say, ‘I think we have it.’
Third, a result needs to be repeatable. Results are considered reliable when they’ve been repeated – ideally corroborated by other investigators or confirmed using a different instrument. For K2-18b, this might mean detecting other molecules that indicate biology, such as oxygen in the planet’s atmosphere. Without more and better data, most researchers are viewing the claim of life on K2-18b with skepticism.
Claims of life on Mars
In the past, some scientists have claimed to have found life much closer to home, on the planet Mars.
Over a century ago, retired Boston merchant turned astronomer Percival Lowell claimed that linear features he saw on the surface of Mars were canals, constructed by a dying civilization to transport water from the poles to the equator. Artificial waterways on Mars would certainly have been a major discovery, but this example failed the other two criteria: strong evidence and repeatability.
Lowell was misled by his visual observations, and he was engaging in wishful thinking. No other astronomers could confirm his findings.
Mars, as taken by the OSIRIS instrument on the ESA Rosetta spacecraft during its February 2007 flyby of the planet and adjusted to show color.ESA & MPS for OSIRIS Team MPS/UPD/LAM/IAA/RSSD/INTA/UPM/DASP/IDA, CC BY-SA
In 1996, NASA held a press conference where a team of scientists presented evidence for biology in the Martian meteorite ALH 84001. Their evidence included an evocative image that seemed to show microfossils in the meteorite.
However, scientists have come up with explanations for the meteorite’s unusual features that do not involve biology. That extraordinary claim has dissipated.
More recently, astronomers detected low levels of methane in the atmosphere of Mars. Like dimethyl sulfide and oxygen, methane on Earth is made primarily – but not exclusively – by life. Different spacecraft and rovers on the Martian surface have returned conflicting results, where a detection with one spacecraft was not confirmed by another.
The low level and variability of methane on Mars is still a mystery. And in the absence of definitive evidence that this very low level of methane has a biological origin, nobody is claiming definitive evidence of life on Mars.
Claims of advanced civilizations
Detecting microbial life on Mars or an exoplanet would be dramatic, but the discovery of extraterrestrial civilizations would be truly spectacular.
The search for extraterrestrial intelligence, or SETI, has been underway for 75 years. No messages have ever been received, but in 1977 a radio telescope in Ohio detected a strong signal that lasted only for a minute.
This signal was so unusual that an astronomer working at the telescope wrote “Wow!” on the printout, giving the signal its name. Unfortunately, nothing like it has since been detected from that region of the sky, so the Wow! Signal fails the test of repeatability.
‘Oumuamua is the first object passing through the solar system that astronomers have identified as having interstellar origins.European Southern Observatory/M. Kornmesser
In 2017, a rocky, cigar-shaped object called ‘Oumuamua was the first known interstellar object to visit the solar system. ‘Oumuamua’s strange shape and trajectory led Harvard astronomer Avi Loeb to argue that it was an alien artifact. However, the object has already left the solar system, so there’s no chance for astronomers to observe it again. And some researchers have gathered evidence suggesting that it’s just a comet.
While many scientists think we aren’t alone, given the enormous amount of habitable real estate beyond Earth, no detection has cleared the threshold enunciated by Carl Sagan.
Claims about the universe
These same criteria apply to research about the entire universe. One particular concern in cosmology is the fact that, unlike the case of planets, there is only one universe to study.
A cautionary tale comes from attempts to show that the universe went through a period of extremely rapid expansion a fraction of a second after the Big Bang. Cosmologists call this event inflation, and it is invoked to explain why the universe is now smooth and flat.
In 2014, astronomers claimed to have found evidence for inflation in a subtle signal from microwaves left over after the Big Bang. Within a year, however, the team retracted the result because the signal had a mundane explanation: They had confused dust in our galaxy with a signature of inflation.
On the other hand, the discovery of the universe’s acceleration shows the success of the scientific method. In 1929, astronomer Edwin Hubble found that the universe was expanding. Then, in 1998, evidence emerged that this cosmic expansion is accelerating. Physicists were startled by this result.
Two research groups used supernovae to separately trace the expansion. In a friendly rivalry, they used different sets of supernovae but got the same result. Independent corroboration increased their confidence that the universe was accelerating. They called the force behind this accelerating expansion dark energy and received a Nobel Prize in 2011 for its discovery.
On scales large and small, astronomers try to set a high bar of evidence before claiming a discovery.Chris Impey, University Distinguished Professor of Astronomy, University of Arizona
This article is republished from The Conversation under a Creative Commons license. Read the original article.
In a dramatic turn of events that captured international attention, the Soviet-era spacecraft Kosmos 482 has completed its final descent after spending over five decades in Earth’s orbit. The spacecraft, which had been closely monitored due to its deteriorating orbit pattern, crashed into the Indian Ocean west of Jakarta at approximately 11:24 p.m. Phoenix time on May 9, 2025, ending weeks of speculation about its potential impact in Arizona.
The Historic Background Originally launched in 1972 as part of an ambitious mission to Venus, Kosmos 482 became a remnant of the Cold War space race after its mission failed. The approximately 3-foot-diameter spacecraft had been trapped in Earth’s orbit for 53 years, joining the growing collection of space debris that concerns modern astronomers and space agencies.
Arizona’s Emergency Response The potential threat to Arizona prompted a swift and coordinated response from local authorities. The Phoenix metropolitan area, initially identified as one of the possible impact zones, activated its emergency response protocols. This included:
Establishment of a temporary command center by the Arizona Department of Emergency Management
Enhanced monitoring systems at Phoenix Sky Harbor International Airport
Coordination between local, state, and federal agencies
Implementation of emergency communication channels for public updates
Local Infrastructure Impact Coincidentally, this event intersected with Phoenix Sky Harbor’s ongoing modernization project, which aims to improve passenger experiences and facility capabilities. The airport’s emergency response teams incorporated spacecraft monitoring into their existing protocols, demonstrating the facility’s adaptive capacity during potential aerospace emergencies.
“This situation, while ultimately resolving without incident in our region, showcased our emergency response capabilities and the importance of our ongoing infrastructure improvements,” stated a Phoenix Sky Harbor spokesperson. The modernization project, which was already underway, proved particularly relevant during this potential aerospace emergency.
Community Response Local residents and businesses in the Phoenix metropolitan area remained vigilant throughout the monitoring period. Emergency management officials maintained regular communications with the public, providing updates through various channels to ensure community awareness and preparedness.
Technical Analysis Space tracking organizations employed advanced monitoring systems to track Kosmos 482’s descent. The spacecraft, powered by systems similar to other Cold War-era satellites, provided valuable data for modern space debris tracking programs. Unlike modern spacecraft such as Voyager 1, which continues to operate using a radioisotope power system, Kosmos 482 had long since lost its operational capabilities.
Final Outcome The spacecraft’s ultimate crash site in the Indian Ocean brought relief to Arizona residents and officials. The incident concluded at approximately 2:24 a.m. EDT (11:24 p.m. Phoenix time), with no reported casualties or damage.
Looking Forward This event serves as a crucial reminder of the challenges posed by orbital debris and the importance of maintaining robust emergency response systems. It also highlights Phoenix’s growing role in aerospace monitoring and emergency management, particularly as the city continues to expand its aviation infrastructure.
Advertisement
The incident has prompted discussions about improving space debris monitoring systems and international cooperation in managing potential aerospace threats, ensuring better preparation for similar events in the future.
STM Daily News is a vibrant news blog dedicated to sharing the brighter side of human experiences. Emphasizing positive, uplifting stories, the site focuses on delivering inspiring, informative, and well-researchedcontent. With a commitment to accurate, fair, and responsible journalism, STM Daily News aims to foster a community of readers passionate about positive change and engaged in meaningful conversations. Join the movement and explore stories that celebrate the positive impacts shaping our world.
Rod: A creative force, blending words, images, and flavors. Blogger, writer, filmmaker, and photographer. Cooking enthusiast with a sci-fi vision. Passionate about his upcoming series and dedicated to TNC Network. Partnered with Rebecca Washington for a shared journey of love and art.
View all posts
Privacy & Cookies: This site uses cookies. By continuing to use this website, you agree to their use.
To find out more, including how to control cookies, see here:
Cookie Policy