infrastructure
Using cameras on transit buses to monitor traffic conditions
Newswise — COLUMBUS, Ohio – Researchers have proposed a novel method for counting and tracking vehicles on public roads, a development that could enhance current traffic systems and help travelers get to their destinations faster.
Using the cameras already installed on campus buses at The Ohio State University, researchers demonstrated that they could automatically and accurately measure counts of vehicles on urban roadways, could detect objects in the road, and could distinguish parked vehicles from those that are moving.
In previous studies, Ohio State researchers found that using these mobile cameras provides much better spatial and temporal coverage than relying on sparsely and often temporarily placed sensors that don’t provide a view of many streets and roads in a city.
“If we collect and process more comprehensive high-resolution spatial information about what’s happening on the roads, then planners could better understand changes in demand, effectively improving efficiency in the broader transportation system,” said Keith Redmill, lead author of the study and a research associate professor of electrical and computer engineering at Ohio State.
Whereas researchers previously used human observers to manually identify the vehicles in the videos, this study, published in the journal Sensors, automates the process using AI.
According to co-authors of the study Mark McCord and Rabi Mishalani, both professors of civil, environmental and geodetic engineering at Ohio State, their team chose to utilize the traffic cameras on the Campus Area Bus Service partly because Ohio State’s large, interconnected campus resembles a small city and their relationship with CABS operators gave them ready access to the collected videos.
“Sharing access to our bus cameras for traffic monitoring is a great example of how university operations can support research and learning,” said Tom Holman, Ohio State’s director of Transportation and Traffic Management. “We are happy to share existing resources that can generate helpful data for long-term traffic planning purposes on campus and beyond.”
But what sets this study apart from similar traffic-related studies is that it utilizes available resources at no extra cost: bus cameras that have already been installed for other safety and security purposes. This allows it to be easily integrated into how other cities manage their traffic monitoring, said Mishalani.
“If we can measure traffic in a way that is as good or better than what is conventionally done with fixed sensors, then we will have created something incredibly useful extremely cheaply,” he said. “Our goal is to start building a system that could do this without much manual intervention because if you want to collect this information over lots of potential vehicles and lots of time, it’s worth fully automating that process.”
The system works by utilizing a state-of-the-art 2D deep learning model called YOLOv4 to automatically detect and track objects. The program is also uniquely adept at recognizing multiple objects in a single image frame, said Redmill.
While still a long way from total implementation, the study suggests the system’s results bear promise for the future of intelligent traffic surveillance. For example, besides counting vehicles, their algorithm is also able to project real-world bird’s-eye-view coordinates of the road network by taking advantage of streams of images, GNSS measurements, and regional information from 2D maps. It’s so precise, the system was also able to detect if the bus veered off from its planned route – and then report it to a map database that logs detailed information about the roadways, said Redmill, who is also a member of Ohio State’s Control and Intelligent Transportations Research Lab (CITR).
With widespread deployment and integration of their proposed approach, the vast collection and complete automation of processing of this data over time would allow for more effective planning, designing and operation of roadways to mitigate heavy traffic across the country.
As for the benefits the public might see, such advancements in traffic surveillance could mean reduced travel times and greater travel choices when trying to get from point A to point B.
“Transportation planners, engineers and operators make vital decisions about the future of our roadways, so when designing transportation systems to work over the next 30 to 50 years, it’s imperative that we give them data that allows them to improve the efficiency of the system and the level of service provided to travelers,” said Mishalani.
The research was supported by the United States Department of Transportation’s Mobility21 University Transportation Center program. Other co-authors are Ekim Yurtsever and Benjamin Coifman, both of Ohio State.
Journal Link: SensorsREQUEST AN EXPERT
Source: Ohio State University
Discover more from Daily News
Subscribe to get the latest posts sent to your email.
Urbanism
New Construction Project at Phoenix Sky Harbor Airport

Phoenix Sky Harbor International Airport, a major transportation hub in Arizona, is set to undergo significant improvements with a new construction project at Terminal 3. According to AZ Family, the work is officially commencing this month on a project that will enhance the airport’s infrastructure, making it more accommodating for travelers.
Expansion at Sky Harbor
The upcoming expansion, which boasts a budget of $326 million, will introduce a new concourse on the north side of Terminal 3. This new addition is designed to increase the terminal’s capacity by adding six new passenger gates, bringing the total to 26 gates. The construction will encompass a vast 173,000 square feet, ultimately providing more flight options and enhanced facilities for travelers.
As reported by AZ Central, the expansion is much-needed, given that Terminal 3 is the oldest terminal at Sky Harbor. McCarthy Building Cos. Inc. has been entrusted with the construction, and they are committed to creating an exceptional experience for passengers. Thomas Assante, McCarthy’s senior project director, stated, “Every portion of the new Terminal 3 concourse will provide an exceptional experience for Sky Harbor passengers.” Notably, McCarthy has experience with airport projects, having recently completed a five-gate concourse at Mesa Gateway Airport, which opened in February 2024.
In addition to expanding gate capacity, the new Terminal 3 concourse plans to feature improvements beyond functionality. Travelers can look forward to new dining options, including three food and beverage spaces, as well as two retail spaces, alongside a passenger lounge. Greg Roybal, an airport spokesman, has confirmed these plans, emphasizing the project’s focus on improving the overall passenger experience.
The anticipated completion date for the new concourse is set for 2027. Once finished, this expansion will not only bolster the terminal’s capabilities but also enhance the amenities available to travelers. The airlines currently operating out of Terminal 3 include Delta, United, Frontier, and Alaska Airlines, among others.
As this construction project unfolds, we will keep readers updated with the latest developments and milestones. With these enhancements on the horizon, Sky Harbor Airport is poised to deliver an even better travel experience for passengers in the coming years. Stay tuned!
Related links:
STM Daily News is a vibrant news blog dedicated to sharing the brighter side of human experiences. Emphasizing positive, uplifting stories, the site focuses on delivering inspiring, informative, and well-researched content. With a commitment to accurate, fair, and responsible journalism, STM Daily News aims to foster a community of readers passionate about positive change and engaged in meaningful conversations. Join the movement and explore stories that celebrate the positive impacts shaping our world.
Discover more from Daily News
Subscribe to get the latest posts sent to your email.
Lifestyle
Biden helped bring science out of the lab and into the community − emphasizing research focused on solutions

Arthur Daemmrich, Arizona State University
President Joe Biden was inaugurated in January 2021 amid a devastating pandemic, with over 24 million COVID-19 cases and more than 400,000 deaths in the U.S. recorded at that point.
Operation Warp Speed, initiated by the Trump administration in May 2020, meant an effective vaccine was becoming available. Biden quickly announced a plan to immunize 100 million Americans over the next three months. By the end of April 2021, 145 million Americans – nearly half the population – had received one vaccine dose, and 103 million were considered fully vaccinated. Science and technology policymakers celebrated this coordination across science, industry and government to address a real-world crisis as a 21st-century Manhattan Project.
From my perspective as a scholar of science and technology policy, Biden’s legacy includes structural, institutional and practical changes to how science is conducted. Building on approaches developed over the course of many years, the administration elevated the status of science in the government and fostered community participation in research.
Raising science’s profile in government
The U.S. has no single ministry of science and technology. Instead, agencies and offices across the executive branch carry out scientific research at several national labs and fund research by other institutions. By elevating the White House Office of Science and Technology Policy to a Cabinet-level organization for the first time in its history, Biden gave the agency greater influence in federal decision-making and coordination.
Formally established in 1976, the agency provides the president and senior staff with scientific and technical advice, bringing science to bear on executive policies. Biden’s inclusion of the agency’s director in his Cabinet was a strong signal about the elevated role science and technology would play in the administration’s solutions to major societal challenges.
Under Biden, the Office of Science and Technology Policy established guidelines that agencies across the government would follow as they implemented major legislation. This included developing technologies that remove carbon dioxide from the atmosphere to address climate change, rebuilding America’s chip industry, and managing the rollout of AI technologies.

Instead of treating the ethical and societal dimensions of scientific and technological change as separate from research and development, the agency advocated for a more integrated approach. This was reflected in the appointment of social scientist Alondra Nelson as the agency’s first deputy director for science and society, and science policy expert Kei Koizumi as principal deputy director for policy. Ethical and societal considerations were added as evaluation criteria for grants. And initiatives such as the AI bill of rights and frameworks for research integrity and open science further encouraged all federal agencies to consider the social effects of their research.
The Office of Science and Technology Policy also introduced new ways for agencies to consult with communities, including Native Nations, rural Americans and people of color, in order to avoid known biases in science and technology research. For example, the agency issued government-wide guidance to recognize and include Indigenous knowledge in federal programs. Agencies such as the Department of Energy have incorporated public perspectives while rolling out atmospheric carbon dioxide removal technologies and building new hydrogen hubs.
Use-inspired research
A long-standing criticism of U.S. science funding is that it often fails to answer questions of societal importance. Members of Congress and policy analysts have argued that funded projects instead overly emphasize basic research in areas that advance the careers of researchers.
In response, the Biden administration established the technology, innovation and partnerships directorate at the National Science Foundation in March 2022.
The directorate uses social science approaches to help focus scientific research and technology on their potential uses and effects on society. For example, engineers developing future energy technologies could start by consulting with the community about local needs and opportunities, rather than pitching their preferred solution after years of laboratory work. Genetic researchers could share both knowledge and financial benefits with the communities that provided the researchers with data.
Fundamentally, “use-inspired” research aims to reconnect scientists and engineers with the people and communities their work ultimately affects, going beyond publication in a journal accessible only to academics.
The technology, innovation and partnerships directorate established initiatives to support regional projects and multidisciplinary partnerships bringing together researchers, entrepreneurs and community organizations. These programs, such as the regional innovation engines and convergence accelerator, seek to balance the traditional process of grant proposals written and evaluated by academics with broader societal demand for affordable health and environmental solutions. This work is particularly key to parts of the country that have not yet seen visible gains from decades of federally sponsored research, such as regions encompassing western North Carolina, northern South Carolina, eastern Tennessee and southwest Virginia.
Community-based scientific research
The Biden administration also worked to involve communities in science not just as research consultants but also as active participants.
Scientific research and technology-based innovation are often considered the exclusive domain of experts from elite universities or national labs. Yet, many communities are eager to conduct research, and they have insights to contribute. There is a decades-long history of citizen science initiatives, such as birdwatchers contributing data to national environmental surveys and community groups collecting industrial emissions data that officials can use to make regulations more cost effective.
Going further, the Biden administration carried out experiments to create research projects in a way that involved community members, local colleges and federal agencies as more equal partners.

For example, the Justice40 initiative asked people from across the country, including rural and small-town Americans, to identify local environmental justice issues and potential solutions.
The National Institutes of Health’s ComPASS program funded community organizations to test and scale successful health interventions, such as identifying pregnant women with complex medical needs and connecting them to specialized care.
And the National Science Foundation’s Civic Innovation Challenge required academic researchers to work with local organizations to address local concerns, improving the community’s technical skills and knowledge.
Frontiers of science and technology policy
Researchers often cite the 1945 report Science: The Endless Frontier, written by former Office of Scientific Research and Development head Vannevar Bush, to describe the core rationales for using American taxpayer money to fund basic science. Under this model, funding science would lead to three key outcomes: a secure national defense, improved health, and economic prosperity. The report, however, says little about how to go from basic science to desired societal outcomes. It also makes no mention of scientists sharing responsibility for the direction and impact of their work.
The 80th anniversary of Bush’s report in 2025 offers an opportunity to move science out into society. At present, major government initiatives are following a technology push model that focuses efforts on only one or a few products and involves little consideration of consumer and market demand. Research has repeatedly demonstrated that consumer or societal pull, which attracts development of products that enhance quality of life, is key to successful uptake of new technologies and their longevity.
Future administrations can further advance science and address major societal challenges by considering how ready society is to take up new technologies and increasing collaboration between government and civil society.
Arthur Daemmrich, Professor of Practice in the School for the Future of Innovation in Society, Arizona State University
This article is republished from The Conversation under a Creative Commons license. Read the original article.
The science section of our news blog STM Daily News provides readers with captivating and up-to-date information on the latest scientific discoveries, breakthroughs, and innovations across various fields. We offer engaging and accessible content, ensuring that readers with different levels of scientific knowledge can stay informed. Whether it’s exploring advancements in medicine, astronomy, technology, or environmental sciences, our science section strives to shed light on the intriguing world of scientific exploration and its profound impact on our daily lives. From thought-provoking articles to informative interviews with experts in the field, STM Daily News Science offers a harmonious blend of factual reporting, analysis, and exploration, making it a go-to source for science enthusiasts and curious minds alike. https://stmdailynews.com/category/science/
Discover more from Daily News
Subscribe to get the latest posts sent to your email.
News
California High-Speed Rail: Progress Amid Challenges in the Central Valley

The California high-speed rail project, a bold vision aimed at transforming transportation across the state, is making strides in the Central Valley, despite facing a rocky road filled with challenges and delays. On January 6, 2025, California Governor Gavin Newsom joined California High-Speed Rail Authority CEO Ian Choudri to celebrate a significant milestone in the construction of the railhead—a staging area for laying down tracks for the future bullet-train route that will connect cities from Merced to Bakersfield.
What’s Happening at the Railhead?
Located between Wasco and Shafter in Kern County, the new railhead site marks the beginning of laying down steel rails for high-speed trains. This pivotal area will serve as the operational hub for transporting materials necessary for track installation, indicating a promising step towards making the high-speed rail a reality.
“Finally, we’re at the point where we’re going to start laying down this track in the next couple of years,” remarked Newsom, emphasizing the significance of this development. The railhead is not just another construction site; it symbolizes the persistent efforts to change the face of transportation in California.
A Journey Full of Hurdles
The high-speed rail project has been no stranger to controversy and challenges. First conceived to provide swift travel across California, the project’s history tells a tale of fluctuating timelines and ballooning costs. Originally initiated in 2013, the construction has continuously faced delays, with the anticipated completion date pushed from 2018 to 2026 for the first segments alone.
In a significant contrast to initial expectations, the financial requirements have surged, with costs for construction packages skyrocketing from a combined estimate of well under $2 billion to an updated total that now exceeds $8 billion across various contracts. This upward shift in expenditure has raised eyebrows and concerns, prompting scrutiny from both political figures and members of the public.
For instance, the first construction package, stretching from north of Madera to Fresno, originally bid at under $1 billion, now faces an anticipated completion at a staggering value of over $3.7 billion. Such changes have led to questions surrounding the project’s management and efficiency.
The Political Landscape
Adding complexity to the situation is the shifting political terrain as federal support has been uncertain. With President-elect Donald Trump slated to take office soon, there is apprehension regarding the potential withdrawal of federal funding that has supported California’s ambitious plans. Historical context reigns as the Federal Railroad Administration canceled nearly $1 billion in previously awarded grants during Trump’s first administration. However, the recent Bipartisan Infrastructure Law, passed in 2021, has provided a glimmer of hope by funneling additional funds towards the project.
State leaders, including Governor Newsom, maintain an optimistic outlook despite the political uncertainties. “We are in a very different place at this sacred moment,” he stated, reminding stakeholders of the project’s momentum.
Looking Ahead
The road ahead remains both exciting and uncertain. The California High-Speed Rail Authority is on the cusp of awarding contracts for track installation, alongside contracts for the purchase of trainsets set for testing operations. The goal is to have the Merced-Bakersfield line operational between 2030 and 2033, a target that promises to reshape commuting experiences in California.
As we move closer to achieving this transformative project, it’s essential to keep in mind that progress in such a complex endeavor requires not only engineering feats but also perseverance amid bureaucratic and fiscal challenges. The upcoming years will undoubtedly be pivotal in determining whether this bold vision of high-speed travel will reach its destination, but for now, California is laying the tracks for a new transit future—one spike at a time.
Stay tuned for more updates as we follow the California high-speed rail project through its journey from ambitious dream to infrastructural reality!
California High-speed Rail Related Links:
California high-speed rail California High-Speed Rail Update ( Fresno Bee) https://www.fresnobee.com/news/local/high-speed-rail/article298078633.html
HSR official website: https://hsr.ca.gov/
STM Daily News is a vibrant news blog dedicated to sharing the brighter side of human experiences. Emphasizing positive, uplifting stories, the site focuses on delivering inspiring, informative, and well-researched content. With a commitment to accurate, fair, and responsible journalism, STM Daily News aims to foster a community of readers passionate about positive change and engaged in meaningful conversations. Join the movement and explore stories that celebrate the positive impacts shaping our world. https://stmdailynews.com/
Discover more from Daily News
Subscribe to get the latest posts sent to your email.
-
Urbanism2 years ago
Signal Hill, California: A Historic Enclave Surrounded by Long Beach
-
News2 years ago
Diana Gregory Talks to us about Diana Gregory’s Outreach Services
-
Senior Pickleball Report2 years ago
The Absolute Most Comfortable Pickleball Shoe I’ve Ever Worn!
-
STM Blog2 years ago
World Naked Gardening Day: Celebrating Body Acceptance and Nature
-
Senior Pickleball Report2 years ago
ACE PICKLEBALL CLUB TO DEBUT THEIR HIGHLY ANTICIPATED INDOOR PICKLEBALL FRANCHISES IN THE US, IN EARLY 2023
-
Travel2 years ago
Unique Experiences at the CitizenM
-
Automotive2 years ago
2023 Nissan Sentra pricing starts at $19,950
-
Senior Pickleball Report2 years ago
“THE PEOPLE’S CHOICE AWARDS OF PICKLEBALL” – VOTING OPEN