Connect with us

The Earth

La Niña Weather Pattern to Disrupt Arizona Winter: What to Expect for 2024-2025

Arizona is expected to have a warmer, drier winter due to a developing La Niña, though uncertainty remains about precipitation levels, highlighting the complexity of weather patterns.

Published

on

photo of white and gray clouds.La Niña
Photo by Brett Sayles on Pexels.com

La Niña

As we prepare for the winter months, the National Oceanic and Atmospheric Administration (NOAA) has released its forecast for the 2024-2025 winter season, and it looks like Arizona might be in for a significant change. According to meteorologists, the state is likely to experience a warmer and drier winter than usual due to the influence of a developing La Niña weather pattern.

@stmblog

Arizona may face a warmer, drier winter due to a developing La Niña, but there’s still a chance for wetter conditions. Stay informed! #LaNiña ♬ original sound – STMDailyNews

Understanding La Niña

La Niña is a climate phenomenon that occurs in the Eastern Pacific Ocean. Typically, trade winds push warm surface waters toward Asia, but when these winds are stronger than normal, they lead to cooler ocean waters in the Eastern Pacific. This shift in ocean temperatures can have widespread effects on weather patterns across the United States.

In Arizona, La Niña usually correlates with above-normal temperatures and below-normal precipitation. This year, however, NOAA indicates that the La Niña phenomenon may be on the weaker side. While moderate to strong La Niña events are more likely to cause significant dry spells, the current weak La Niña means that the impacts may not be as pronounced.

Is Drier Always Drier?

It’s important to note that not every La Niña leads to a dry winter. According to the National Weather Service, there remains a 10% to 30% chance of experiencing wetter than normal conditions this winter. This uncertainty highlights the complexity of weather patterns and the need for ongoing monitoring and analysis.

Factors Influencing the Forecast

The official winter outlook takes into account various factors beyond La Niña, including the latest climate models and the broader context of climate change. These elements play a crucial role in shaping the weather we can expect in the coming months.

As we move closer to winter, it will be essential for residents and visitors in Arizona to stay informed about potential weather changes and be prepared for a season that might not follow the traditional patterns.

Preparing for the Winter

For those living in Arizona, it might be worth considering how a warmer, drier winter could affect your plans, from water conservation efforts to outdoor activities. Staying updated with NOAA and local weather forecasts will be crucial as we approach the winter months.

As winter approaches, it’s clear that La Niña will play a key role in shaping the weather across Arizona. While there is still some uncertainty regarding precipitation levels, one thing is for sure: it’s going to be an interesting season ahead.

Advertisement

Resources

Stay warm and stay informed this winter!

The science section of our news blog STM Daily News provides readers with captivating and up-to-date information on the latest scientific discoveries, breakthroughs, and innovations across various fields. We offer engaging and accessible content, ensuring that readers with different levels of scientific knowledge can stay informed. Whether it’s exploring advancements in medicine, astronomy, technology, or environmental sciences, our science section strives to shed light on the intriguing world of scientific exploration and its profound impact on our daily lives. From thought-provoking articles to informative interviews with experts in the field, STM Daily News Science offers a harmonious blend of factual reporting, analysis, and exploration, making it a go-to source for science enthusiasts and curious minds alike. https://stmdailynews.com/category/science/

STM Daily News is a vibrant news blog dedicated to sharing the brighter side of human experiences. Emphasizing positive, uplifting stories, the site focuses on delivering inspiring, informative, and well-researched content. With a commitment to accurate, fair, and responsible journalism, STM Daily News aims to foster a community of readers passionate about positive change and engaged in meaningful conversations. Join the movement and explore stories that celebrate the positive impacts shaping our world.

https://stmdailynews.com/

Authors

  • Rod Washington

    Rod: A creative force, blending words, images, and flavors. Blogger, writer, filmmaker, and photographer. Cooking enthusiast with a sci-fi vision. Passionate about his upcoming series and dedicated to TNC Network. Partnered with Rebecca Washington for a shared journey of love and art. View all posts

Want more stories 👋
“Your morning jolt of Inspiring & Interesting Stories!”

Sign up to receive awesome articles directly to your inbox.

We don’t spam! Read our privacy policy for more info.


Discover more from Daily News

Subscribe to get the latest posts sent to your email.

Rod: A creative force, blending words, images, and flavors. Blogger, writer, filmmaker, and photographer. Cooking enthusiast with a sci-fi vision. Passionate about his upcoming series and dedicated to TNC Network. Partnered with Rebecca Washington for a shared journey of love and art.

Science

Sceye Partners with NASA and USGS to Address Climate Change from the Stratosphere

Published

on


Strategic collaborations above 60,000 feet unlocks new potential for traffic and climate management, earth observation and imaging, methane, storm, and wildfire detection, and more

ROSWELL, N.M. /PRNewswire/ — Sceye, a leading U.S. aerospace company specializing in High-Altitude Platform Systems (HAPS), announced a cooperating research and development agreement with United States Geological Survey (USGS) and a Space Act agreement with NASA. The purpose of these agreements is to enhance climate and environmental imaging, monitoring, and data collection from the stratosphere. This partnership builds on Sceye’s successful 2024 flight program, which concluded with a milestone launch on October 24, 2024, demonstrating the platform’s readiness for commercialization and long-duration missions in 2025.

Sceye launch October 2024

This collaboration positions Sceye’s HAPS technology as a critical partner in providing precise earth observation and lifting multi-mission payloads. Using advanced hyperspectral imaging, Sceye will help NASA and USGS detect methane “super emitters,” monitor wildfire activity, storms, earthquakes, and other extreme weather events. The partnership will help track essential environmental data and metrics in real-time and also positions Sceye to support NASA and USGS in expanding the range of climate data collection and in strengthening forecasting models.

“Our partnership with NASA and USGS is built on the potential of HAPS to stay over an area of operation for long periods of time. In contrast to satellites, HAPS can do that below orbital altitude, thereby offering a unique vantage point to address climate change and better prepare for extreme weather events,” said Mikkel Vestergaard Frandsen, CEO and Founder of Sceye. “We are unlocking the stratosphere as the next frontier to make important scientific advancements that will help communities across the world.”

With climate change accelerating and methane emissions at record levels, Sceye’s HAPS technology offers a solution to precisely detect emissions down to the pixel. Sceye is also collaborating with the Environmental Protection Agency (EPA) and the New Mexico Environmental Department on a five-year program to detect methane emissions across the state. Sceye’s last flight of the year demonstrates the platform’s operational readiness by capturing essential data through onboard infrared cameras.

Sceye’s HAPS are powered by solar energy captured during daylight and stored in batteries to operate throughout the night. This enables continuous flight above 60,000 feet, where few technologies can operate effectively.

“HAPS are a gamechanger for the scientific community because they can linger over events, take high resolution data continuously in real time, and give a more accurate understanding of what may happen before, during, and after an event,” said Jonathan Stock, Director, USGS National Innovation Center.

The final launch of Sceye’s 2024 flight program completed a successful flight year and the full characterization of the vehicle, including achieving the important milestones of controlled relocation, full diurnal flight, and the ability to stay over an area of operation for long periods of time.

Advertisement

With a focus on commercialization and endurance in 2025, Sceye will transition to testing the platform’s capacity to sustain long-duration “seasonal flights.” These missions will enable continuous monitoring during critical periods like wildfire season, supporting rapid response efforts with near real-time data on evolving threats.

Following a successful Series C round that raised the company’s pre-money valuation to $525 million, Sceye is advancing its mission to create world-changing solutions.

About Sceye

Founded in 2014, Sceye is an aerospace company dedicated to advancing stratospheric technology to connect people and protect the planet. Sceye leads the High-Altitude Platform Systems (HAPS) industry, focusing on universal connectivity, climate monitoring, natural resource management, and disaster prevention.

SOURCE Sceye

The science section of our news blog STM Daily News provides readers with captivating and up-to-date information on the latest scientific discoveries, breakthroughs, and innovations across various fields. We offer engaging and accessible content, ensuring that readers with different levels of scientific knowledge can stay informed. Whether it’s exploring advancements in medicine, astronomy, technology, or environmental sciences, our science section strives to shed light on the intriguing world of scientific exploration and its profound impact on our daily lives. From thought-provoking articles to informative interviews with experts in the field, STM Daily News Science offers a harmonious blend of factual reporting, analysis, and exploration, making it a go-to source for science enthusiasts and curious minds alike. https://stmdailynews.com/category/science/

Advertisement

Discover more from Daily News

Subscribe to get the latest posts sent to your email.

Continue Reading

Science

Separating out signals recorded at the seafloor

Roger Bryant and David Fike’s research reveals that pyrite sulfur isotopes mainly reflect local conditions, shifting fundamental understanding of oceanic environmental studies.

Published

on

Signals
Credit: Clive Jones, Washington University in St. Louis
Roger Bryant studied ocean floor core samples at the Secondary Ion Mass Spectrometry (SIMS) facility at Washington University in St. Louis during his PhD studies. Bryant and David Fike have used this data to prove a discovery that will fundamentally change how scientists use pyrite sulfur isotopes to study oceanic conditions.
« Separating out signals recorded at the seafloor

Newswise — Blame it on plate tectonics. The deep ocean is never preserved, but instead is lost to time as the seafloor is subducted. Geologists are mostly left with shallower rocks from closer to the shoreline to inform their studies of Earth history.

Signals from the Sea

“We have only a good record of the deep ocean for the last ~180 million years,” said David Fike, the Glassberg/Greensfelder Distinguished University Professor of Earth, Environmental, and Planetary Sciences in Arts & Sciences at Washington University in St. Louis. “Everything else is just shallow-water deposits. So it’s really important to understand the bias that might be present when we look at shallow-water deposits.”

One of the ways that scientists like Fike use deposits from the seafloor is to reconstruct timelines of past ecological and environmental change. Researchers are keenly interested in how and when oxygen began to build up in the oceans and atmosphere, making Earth more hospitable to life as we know it.

For decades they have relied on pyrite, the iron-sulfide mineral known as “fool’s gold,” as a sensitive recorder of conditions in the marine environment where it is formed. By measuring the bulk isotopic composition of sulfur in pyrite samples — the relative abundance of sulfur atoms with slightly different mass — scientists have tried to better understand ancient microbial activity and interpret global chemical cycles.

But the outlook for pyrite is not so shiny anymore. In a pair of companion papers published Nov. 24 in the journal Science, Fike and his collaborators show that variations in pyrite sulfur isotopes may not represent the global processes that have made them such popular targets of analysis.

Instead, Fike’s research demonstrates that pyritte responds predominantly to local processes that should not be taken as representative of the whole ocean. A new microanalysis approach developed at Washington University helped the researchers to separate out signals in pyrite that reveal the relative influence of microbes and that of local climate.

For the first study, Fike worked with Roger Bryant, who completed his graduate studies at Washington University, to examine the grain-level distribution of pyrite sulfur isotope compositions in a sample of recent glacial-interglacial sediments. They developed and used a cutting-edge analytical technique with the secondary-ion mass spectrometer (SIMS) in Fike’s laboratory.

“We analyzed every individual pyrite crystal that we could find and got isotopic values for each one,” Fike said. By considering the distribution of results from individual grains, rather than the average (or bulk) results, the scientists showed that it is possible to tease apart the role of the physical properties of the depositional environment, like the sedimentation rate and the porosity of the sediments, from the microbial activity in the seabed.

Advertisement

“We found that even when bulk pyrite sulfur isotopes changed a lot between glacials and interglacials, the minima of our single grain pyrite distributions remained broadly constant,” Bryant said. “This told us that microbial activity did not drive the changes in bulk pyrite sulfur isotopes and refuted one of our major hypotheses.”

“Using this framework, we’re able to go in and look at the separate roles of microbes and sediments in driving the signals,” Fike said. “That to me represents a huge step forward in being able to interpret what is recorded in these signals.”

In the second paper, led by Itay Halevy of the Weizmann Institute of Science and co-authored by Fike and Bryant, the scientists developed and explored a computer model of marine sediments, complete with mathematical representations of the microorganisms that degrade organic matter and turn sulfate into sulfide and the processes that trap that sulfide in pyrite.

“We found that variations in the isotopic composition of pyrite are mostly a function of the depositional environment in which the pyrite formed,” Halevy said. The new model shows that a range of parameters of the sedimentary environment affect the balance between sulfate and sulfide consumption and resupply, and that this balance is the major determinant of the sulfur isotope composition of pyrite.

“The rate of sediment deposition on the seafloor, the proportion of organic matter in that sediment, the proportion of reactive iron particles, the density of packing of the sediment as it settles to the seafloor — all of these properties affect the isotopic composition of pyrite in ways that we can now understand,” he said.

Importantly, none of these properties of the sedimentary environment are strongly linked to the global sulfur cycle, to the oxidation state of the global ocean, or essentially any other property that researchers have traditionally used pyrite sulfur isotopes to reconstruct, the scientists said.

“The really exciting aspect of this new work is that it gives us a predictive model for how we think other pyrite records should behave,” Fike said. “For example, if we can interpret other records — and better understand that they are driven by things like local changes in sedimentation, rather than global parameters about ocean oxygen state or microbial activity — then we can try to use this data to refine our understanding of sea level change in the past.”

Advertisement

Source: Washington University in St. Louis

The science section of our news blog STM Daily News provides readers with captivating and up-to-date information on the latest scientific discoveries, breakthroughs, and innovations across various fields. We offer engaging and accessible content, ensuring that readers with different levels of scientific knowledge can stay informed. Whether it’s exploring advancements in medicine, astronomy, technology, or environmental sciences, our science section strives to shed light on the intriguing world of scientific exploration and its profound impact on our daily lives. From thought-provoking articles to informative interviews with experts in the field, STM Daily News Science offers a harmonious blend of factual reporting, analysis, and exploration, making it a go-to source for science enthusiasts and curious minds alike. https://stmdailynews.com/category/science/


Discover more from Daily News

Subscribe to get the latest posts sent to your email.

Continue Reading

The Earth

Tiny robots and AI algorithms could help to craft material solutions for cleaner environments

Published

on

material
Air pollution is a global problem, but scientists are investigating new materials that could help clean it up. AP Photo/Sergei Grits

Mahshid Ahmadi, University of Tennessee

Many human activities release pollutants into the air, water and soil. These harmful chemicals threaten the health of both people and the ecosystem. According to the World Health Organization, air pollution causes an estimated 4.2 million deaths annually.

Scientists are looking into solutions, and one potential avenue is a class of materials called photocatalysts. When triggered by light, these materials undergo chemical reactions that initial studies have shown can break down common toxic pollutants.

I am a materials science and engineering researcher at the University of Tennessee. With the help of robots and artificial intelligence, my colleagues and I are making and testing new photocatalysts with the goal of mitigating air pollution.

Breaking down pollutants

The photocatalysts work by generating charged carriers in the presence of light. These charged carriers are tiny particles that can move around and cause chemical reactions. When they come into contact with water and oxygen in the environment, they produce substances called reactive oxygen species. These highly active reactive oxygen species can bond to parts of the pollutants and then either decompose the pollutants or turn them into harmless – or even useful – products.

A cube-shaped metal machine with a chamber filled with bright light, and a plate of tubes shown going under the light.
To facilitate the photocatalytic reaction, researchers in the Ahmadi lab put plates of perovskite nanocrystals and pollutants under bright light to see whether the reaction breaks down the pollutants. Astita Dubey

But some materials used in the photocatalytic process have limitations. For example, they can’t start the reaction unless the light has enough energy – infrared rays with lower energy light, or visible light, won’t trigger the reaction.

Another problem is that the charged particles involved in the reaction can recombine too quickly, which means they join back together before finishing the job. In these cases, the pollutants either do not decompose completely or the process takes a long time to accomplish.

Additionally, the surface of these photocatalysts can sometimes change during or after the photocatalytic reaction, which affects how they work and how efficient they are.

To overcome these limitations, scientists on my team are trying to develop new photocatalytic materials that work efficiently to break down pollutants. We also focus on making sure these materials are nontoxic so that our pollution-cleaning materials aren’t causing further pollution.

Advertisement
A plate of tiny tubes, with some colored dark blue, others light blue, and others transparent.
This plate from the Ahmadi lab is used while testing how perovskite nanocrystals and light break down pollutants, like the blue dye shown. The light blue color indicates partial degradation, while transparent water signifies complete degradation. Astita Dubey

Teeny tiny crystals

Scientists on my team use automated experimentation and artificial intelligence to figure out which photocatalytic materials could be the best candidates to quickly break down pollutants. We’re making and testing materials called hybrid perovskites, which are tiny crystals – they’re about a 10th the thickness of a strand of hair.

These nanocrystals are made of a blend of organic (carbon-based) and inorganic (non-carbon-based) components.

They have a few unique qualities, like their excellent light-absorbing properties, which come from how they’re structured at the atomic level. They’re tiny, but mighty. Optically, they’re amazing too – they interact with light in fascinating ways to generate a large number of tiny charge carriers and trigger photocatalytic reactions.

These materials efficiently transport electrical charges, which allows them to transport light energy and drive the chemical reactions. They’re also used to make solar panels more efficient and in LED lights, which create the vibrant displays you see on TV screens.

There are thousands of potential types of hybrid nanocrystals. So, my team wanted to figure out how to make and test as many as we can quickly, to see which are the best candidates for cleaning up toxic pollutants.

Bringing in robots

Instead of making and testing samples by hand – which takes weeks or months – we’re using smart robots, which can produce and test at least 100 different materials within an hour. These small liquid-handling robots can precisely move, mix and transfer tiny amounts of liquid from one place to another. They’re controlled by a computer that guides their acceleration and accuracy.

A researcher in a white lab coat smiling at the camera next to a fume hood, with plates of small tubes inside it.
The Opentrons pipetting robot helps Astita Dubey, a visiting scientist working with the Ahmadi lab, synthesize materials and treat them with organic pollutants to test whether they can break down the pollutants. Jordan Marshall

We also use machine learning to guide this process. Machine learning algorithms can analyze test data quickly and then learn from that data for the next set of experiments executed by the robots. These machine learning algorithms can quickly identify patterns and insights in collected data that would normally take much longer for a human eye to catch.

Our approach aims to simplify and better understand complex photocatalytic systems, helping to create new strategies and materials. By using automated experimentation guided by machine learning, we can now make these systems easier to analyze and interpret, overcoming challenges that were difficult with traditional methods.

Mahshid Ahmadi, Assistant Professor of Materials Science and Engineering, University of Tennessee

Advertisement

This article is republished from The Conversation under a Creative Commons license. Read the original article.

The science section of our news blog STM Daily News provides readers with captivating and up-to-date information on the latest scientific discoveries, breakthroughs, and innovations across various fields. We offer engaging and accessible content, ensuring that readers with different levels of scientific knowledge can stay informed. Whether it’s exploring advancements in medicine, astronomy, technology, or environmental sciences, our science section strives to shed light on the intriguing world of scientific exploration and its profound impact on our daily lives. From thought-provoking articles to informative interviews with experts in the field, STM Daily News Science offers a harmonious blend of factual reporting, analysis, and exploration, making it a go-to source for science enthusiasts and curious minds alike. https://stmdailynews.com/category/science/


Discover more from Daily News

Subscribe to get the latest posts sent to your email.

Continue Reading

Trending