Connect with us

Science

NASA Seeks Student Missions to Send to Space in 2026, Beyond

Published

on

cubesat prep
Technicians with the University of Kansas prepare their KUbeSat-1 for integration at Firefly’s Payload Processing Facility at Vandenberg Space Force Base, California on Thursday, April 25, 2024. Credit: NASA

NASA Opportunities

NASA announced a new round of opportunities for CubeSat, developers to build spacecrafts on that will fly on upcoming launches through the agency’s CSLI (CubeSat Launch Initiative). CubeSats are a class of small spacecraft called nanosatellites.

The initiative provides space access to U.S. educational institutions, certain non-profit organizations, and informal educational institutions such as museums and science centers, as well as NASA centers focused on workforce development, including the agency’s Jet Propulsion Laboratory in southern California. It also encourages participation by minority serving institutions.

“Working with CubeSats is a way to get students interested in launching a career in the space industry,” said Jeanie Hall, CSLI program executive at NASA Headquarters in Washington. “NASA reviews applications for CubeSat missions every year and selects projects with an educational component that also can benefit the agency in better understanding education, science, exploration, and technology.”

Applicants must submit proposals by 5 p.m. EST, Nov. 15. NASA expects to make selections by March 14, 2025, for flight opportunities in 2026-2029, although selection does not guarantee a launch opportunity. Applicants are responsible for funding the development of the small satellites.

Selected CubeSats get assigned a launch and deployment directly from a rocket or to low Earth orbit from the International Space Station. Once accepted, NASA mission managers act as advisors to the CubeSat team, ensuring technical, safety, and regulatory requirements are satisfied before launch. Those selected will strengthen their skills in hardware design and development and build knowledge in operating the CubeSats.

Eight CubeSat missions recently shared a ride to space on Firefly Aerospace’s Alpha rocket that launched on July 3 from Vandenberg Space Force Base in California. One mission is CatSat, built by students at the University of Arizona, which is testing a deployable antenna attached to a Mylar balloon. Another is KUbeSat-1, built by the University of Kansas, is testing a new method of measuring the cosmic rays that hit the Earth. This launch also was notable for two CSLI ‘first’ milestones. The KUbeSat-1 and another called MESAT-1 were the first CSLI missions from the states of Kansas and Maine respectively.

Four CubeSats also went to the space station as cargo in a SpaceX Dragon capsule on March 21 aboard a Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida as part of the agency’s SpaceX 30th commercial resupply mission. Once aboard the space station, astronauts deployed the small missions into various orbits to demonstrate and mature technologies meant to improve solar power generation, detect gamma ray bursts, determine crop water usage, and measure root-zone soil and snowpack moisture levels.

CubeSats are a class of spacecraft sized in multiples of a standardized unit called a “U.” A 1-Unit (1U) CubeSat is about 10 x 10 x 11 cm in size (3.9 x 3.9 x 4.5 inches). They are small enough to fit in the palm of your hand and can be stacked together to form a slightly larger, more capable spacecraft. A 3U CubeSat is three times the size of a 1U, a 6U is six times the size.

Advertisement
Find your perfect chandelier for living room, bedroom, dining room. Shop now

NASA has selected CubeSat missions from 45 states, Washington, and Puerto Rico, and launched about 160 CubeSats since inception.

The CubeSat Launch Initiative is managed by NASA’s Launch Services Program based at NASA’s Kennedy Space Center in Florida. 

To learn more information about CSLI, visit:

https://go.nasa.gov/CubeSat_initiative

The science section of our news blog STM Daily News provides readers with captivating and up-to-date information on the latest scientific discoveries, breakthroughs, and innovations across various fields. We offer engaging and accessible content, ensuring that readers with different levels of scientific knowledge can stay informed. Whether it’s exploring advancements in medicine, astronomy, technology, or environmental sciences, our science section strives to shed light on the intriguing world of scientific exploration and its profound impact on our daily lives. From thought-provoking articles to informative interviews with experts in the field, STM Daily News Science offers a harmonious blend of factual reporting, analysis, and exploration, making it a go-to source for science enthusiasts and curious minds alike. https://stmdailynews.com/category/science/

Author


Discover more from Daily News

Subscribe to get the latest posts sent to your email.

astronomy

A Celestial Spectacle: Witness the Rare Planetary Parade on February 28

On February 28, 2025, a rare planetary parade will showcase all seven planets aligning in the night sky. This remarkable event won’t occur again until 2040, making it unmissable.

Published

on

sun and planets in a plantary parade.
Photo by Zelch Csaba on Pexels.com

Planetary Parade

Astronomy enthusiasts and casual stargazers alike have something extraordinary to look forward to at the end of February. For one brief moment, on the evening of February 28, 2025, all seven planets—Mars, Jupiter, Uranus, Venus, Neptune, Mercury, and Saturn—will align in the night sky, creating a captivating planetary parade. This remarkable event marks the last time such an alignment will be visible until 2040, making it an occasion not to be missed.

What to Expect

The planetary parade will unfold shortly after sunset, with each planet showcasing its brilliance against the backdrop of the evening sky. While most of these celestial bodies will shine brighter than even the brightest stars, Uranus and Neptune will likely require binoculars or a telescope for a better view.

Currently, six of the planets are already aligned, but stargazers will have to wait until February 28 for Mercury to make its debut just above the horizon. Dr. Christopher Barnes, a senior lecturer at the University of Derby, explains the visibility details: “Mars will appear in the east, Jupiter and Uranus in the southeast, and Venus, Neptune, and Saturn in the west.”

Viewing Tips

For those wishing to experience this cosmic event, the best time to observe will be just after sunset when the stars begin to appear. Dr. Barnes suggests that even people in urban areas, where light pollution is often an issue, will be able to see most of the planets. However, seeking a location away from city lights will enhance the viewing experience.

The Benefits of Stargazing

Beyond the thrilling visual spectacle, taking time to gaze upon the stars and planets offers numerous benefits for one’s mental and emotional well-being. Dr. Barnes points out that stargazing encourages mindfulness, allowing individuals to detach from the stresses of daily life. “Engaging with the night sky fosters a sense of peace, restoration, and perspective,” he says.

Future Events

After February 28, the next opportunity to see a planetary alignment of five or more planets will occur in late October 2028 and again in February 2034. However, another seven-planet alignment will not be witnessed for another 15 years, making this February a particularly special occasion.

To cater to those unable to view the parade due to unfavorable weather or light pollution, several observatories will provide live streams of the event. This means everyone can partake in this astral celebration from the comfort of their homes.

As we approach February 28, it’s time to mark your calendars for this rare planetary parade. Whether you grab your telescope, plan a trip to a dark-sky location, or tune in to a live stream, don’t miss your chance to witness this extraordinary alignment of the planets, a spectacle that will be remembered long after it fades from view. Prepare to look up and enjoy the wonders of our solar system!

Advertisement
Find your perfect chandelier for living room, bedroom, dining room. Shop now

Resources:

Who doesn’t love a parade, especially a planet parade? How and when to see up to 7 planets

Planetary Parade will soon be visible in the evening sky

The science section of our news blog STM Daily News provides readers with captivating and up-to-date information on the latest scientific discoveries, breakthroughs, and innovations across various fields. We offer engaging and accessible content, ensuring that readers with different levels of scientific knowledge can stay informed. Whether it’s exploring advancements in medicine, astronomy, technology, or environmental sciences, our science section strives to shed light on the intriguing world of scientific exploration and its profound impact on our daily lives. From thought-provoking articles to informative interviews with experts in the field, STM Daily News Science offers a harmonious blend of factual reporting, analysis, and exploration, making it a go-to source for science enthusiasts and curious minds alike. https://stmdailynews.com/category/science/


Discover more from Daily News

Subscribe to get the latest posts sent to your email.

Continue Reading

News

Water is the other US-Mexico border crisis, and the supply crunch is getting worse

The U.S.-Mexico border is facing a severe water crisis exacerbated by climate change, increased demand, and pollution. Collaborative governance is essential to address these growing challenges effectively.

Published

on

Mexico
View of the Rio Grande flowing through Ciudad Juarez, Mexico, photographed from the Paso Del Norte International Bridge. Paul Rarje/AFP via Getty Images

Gabriel Eckstein, Texas A&M University and Rosario Sanchez, Texas A&M University

Immigration and border security will be the likely focus of U.S.-Mexico relations under the new Trump administration. But there also is a growing water crisis along the U.S.–Mexico border that affects tens of millions of people on both sides, and it can only be managed if the two governments work together.

Climate change is shrinking surface and groundwater supplies in the southwestern U.S. Higher air temperatures are increasing evaporation rates from rivers and streams and intensifying drought. Mexico is also experiencing multiyear droughts and heat waves.

Growing water use is already overtaxing limited supplies from nearly all of the region’s cross-border rivers, streams and aquifers. Many of these sources are contaminated with agricultural pollutants, untreated waste and other substances, further reducing the usability of available water.

As Texas-based scholars who study the legal and scientific aspects of water policy, we know that communities, farms and businesses in both countries rely on these scarce water supplies. In our view, water conditions on the border have changed so much that the current legal framework for managing them is inadequate.

Unless both nations recognize this fact, we believe that water problems in the region are likely to worsen, and supplies may never recover to levels seen as recently as the 1950s. Although the U.S. and Mexico have moved to address these concerns by updating the 1944 water treaty, these steps are not long-term solutions.

Map of the Rio Grande and its drainage area through Colorado, New Mexico, Texas and Mexico.
The Rio Grande flows south from Colorado and forms the 1,250-mile (2,000-kilometer) Texas-Mexico border. Kmusser/Wikimedia, CC BY-SA

Growing demand, shrinking supply

The U.S.-Mexico border region is mostly arid, with water coming from a few rivers and an unknown amount of groundwater. The main rivers that cross the border are the Colorado and the Rio Grande – two of the most water-stressed systems in the world.

The Colorado River provides water to more than 44 million people, including seven U.S. and two Mexican states, 29 Indian tribes and 5.5 million acres of farmland. Only about 10% of its total flow reaches Mexico. The river once emptied into the Gulf of California, but now so much water is withdrawn along its course that since the 1960s it typically peters out in the desert.

The Rio Grande supplies water to roughly 15 million people, including 22 Indian tribes, three U.S. and four Mexican states and 2.8 million irrigated acres. It forms the 1,250-mile (2,000-kilometer) Texas-Mexico border, winding from El Paso in the west to the Gulf of Mexico in the east.

Advertisement
Find your perfect chandelier for living room, bedroom, dining room. Shop now
Map of Colorado river and its drainage basin.
The Colorado River flows through seven U.S. states and crosses into Mexico at the Arizona-California border. USGS

Other rivers that cross the border include the Tijuana, San Pedro, Santa Cruz, New and Gila. These are all significantly smaller and have less economic impact than the Colorado and the Rio Grande.

At least 28 aquifers – underground rock formations that contain water – also traverse the border. With a few exceptions, very little information on these shared resources exists. One thing that is known is that many of them are severely overtapped and contaminated.

Nonetheless, reliance on aquifers is growing as surface water supplies dwindle. Some 80% of groundwater used in the border region goes to agriculture. The rest is used by farmers and industries, such as automotive and appliance manufacturers.

Over 10 million people in 30 cities and communities throughout the border region rely on groundwater for domestic use. Many communities, including Ciudad Juarez; the sister cities of Nogales in both Arizona and Sonora; and the sister cities of Columbus in New Mexico and Puerto Palomas in Chihuahua, get all or most of their fresh water from these aquifers.

A booming region

About 30 million people live within 100 miles (160 kilometers) of the border on both sides. Over the next 30 years, that figure is expected to double.

Municipal and industrial water use throughout the region is also expected to increase. In Texas’ lower Rio Grande Valley, municipal use alone could more than double by 2040.

At the same time, as climate change continues to worsen, scientists project that snowmelt will decrease and evaporation rates will increase. The Colorado River’s baseflow – the portion of its volume that comes from groundwater, rather than from rain and snow – may decline by nearly 30% in the next 30 years.

Precipitation patterns across the region are projected to be uncertain and erratic for the foreseeable future. This trend will fuel more extreme weather events, such as droughts and floods, which could cause widespread harm to crops, industrial activity, human health and the environment.

Advertisement
Find your perfect chandelier for living room, bedroom, dining room. Shop now

Further stress comes from growth and development. Both the Colorado River and Rio Grande are tainted by pollutants from agricultural, municipal and industrial sources. Cities on both sides of the border, especially on the Mexican side, have a long history of dumping untreated sewage into the Rio Grande. Of the 55 water treatment plants located along the border, 80% reported ongoing maintenance, capacity and operating problems as of 2019.

Drought across the border region is already stoking domestic and bilateral tensions. Competing water users are struggling to meet their needs, and the U.S. and Mexico are straining to comply with treaty obligations for sharing water.

Cross-border water politics

Mexico and the United States manage water allocations in the border region mainly under two treaties: a 1906 agreement focused on the Upper Rio Grande Basin and a 1944 treaty covering the Colorado River and Lower Rio Grande.

Under the 1906 treaty, the U.S. is obligated to deliver 60,000 acre-feet of water to Mexico where the Rio Grande reaches the border. This target may be reduced during droughts, which have occurred frequently in recent decades. An acre-foot is enough water to flood an acre of land 1 foot deep – about 325,000 gallons (1.2 million liters).

Allocations under the 1944 treaty are more complicated. The U.S. is required to deliver 1.5 million acre-feet of Colorado River water to Mexico at the border – but as with the 1906 treaty, reductions are allowed in cases of extraordinary drought.

Until the mid-2010s, the U.S. met its full obligation each year. Since then, however, regional drought and climate change have severely reduced the Colorado River’s flow, requiring substantial allocation reductions for both the U.S. and Mexico.

In 2025, states in the U.S. section of the lower Colorado River basin will see a reduction of over 1 million acre-feet from prior years. Mexico’s allocation will decline by approximately 280,500 acre-feet under the 1944 treaty.

Advertisement
Find your perfect chandelier for living room, bedroom, dining room. Shop now

This agreement provides each nation with designated fractions of flows from the Lower Rio Grande and specific tributaries. Regardless of water availability or climatic conditions, Mexico also is required to deliver to the U.S. a minimum of 1,750,000 acre-feet of water from six named tributaries, averaged over five-year cycles. If Mexico falls short in one cycle, it can make up the deficit in the next five-year cycle, but cannot delay repayment further. https://www.youtube.com/embed/IgWSMgg9TmE?wmode=transparent&start=0 The U.S. and Mexico are struggling to share a shrinking water supply in the border region.

Since the 1990s, extraordinary droughts have caused Mexico to miss its delivery obligations three times. Although Mexico repaid its water debts in subsequent cycles, these shortfalls raised diplomatic tensions that led to last-minute negotiations and large-scale water transfers from Mexico to the U.S.

Mexican farmers in Lower Rio Grande irrigation districts who had to shoulder these cuts felt betrayed. In 2020, they protested, confronting federal soldiers and temporarily seizing control of a dam.

U.S. President Donald Trump and Mexican President Claudia Scheinbaum clearly appreciate the political and economic importance of the border region. But if water scarcity worsens, it could supplant other border priorities.

In our view, the best way to prevent this would be for the two countries to recognize that conditions are deteriorating and update the existing cross-border governance regime so that it reflects today’s new water realities.

Gabriel Eckstein, Professor of Law, Texas A&M University and Rosario Sanchez, Senior Research Scientist, Texas Water Resources Institute, Texas A&M University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Advertisement
Find your perfect chandelier for living room, bedroom, dining room. Shop now

Want more stories 👋
“Your morning jolt of Inspiring & Interesting Stories!”

Sign up to receive awesome articles directly to your inbox.

We don’t spam! Read our privacy policy for more info.

STM Coffee Newsletter 1

Discover more from Daily News

Subscribe to get the latest posts sent to your email.

Continue Reading

Tech

How close are quantum computers to being really useful? Podcast

Quantum computers could revolutionize science by solving complex problems. However, scaling and error correction remain significant challenges before achieving practical applications.

Published

on

quantum computers
Audio und verbung/Shutterstock

Gemma Ware, The Conversation

Quantum computers have the potential to solve big scientific problems that are beyond the reach of today’s most powerful supercomputers, such as discovering new antibiotics or developing new materials.

But to achieve these breakthroughs, quantum computers will need to perform better than today’s best classical computers at solving real-world problems. And they’re not quite there yet. So what is still holding quantum computing back from becoming useful?

In this episode of The Conversation Weekly podcast, we speak to quantum computing expert Daniel Lidar at the University of Southern California in the US about what problems scientists are still wrestling with when it comes to scaling up quantum computing, and how close they are to overcoming them.

https://cdn.theconversation.com/infographics/561/4fbbd099d631750693d02bac632430b71b37cd5f/site/index.html

Quantum computers harness the power of quantum mechanics, the laws that govern subatomic particles. Instead of the classical bits of information used by microchips inside traditional computers, which are either a 0 or a 1, the chips in quantum computers use qubits, which can be both 0 and 1 at the same time or anywhere in between. Daniel Lidar explains:

“Put a lot of these qubits together and all of a sudden you have a computer that can simultaneously represent many, many different possibilities …  and that is the starting point for the speed up that we can get from quantum computing.”

Faulty qubits

One of the biggest problems scientist face is how to scale up quantum computing power. Qubits are notoriously prone to errors – which means that they can quickly revert to being either a 0 or a 1, and so lose their advantage over classical computers.

Scientists have focused on trying to solve these errors through the concept of redundancy – linking strings of physical qubits together into what’s called a “logical qubit” to try and maximise the number of steps in a computation. And, little by little, they’re getting there.

Advertisement
Find your perfect chandelier for living room, bedroom, dining room. Shop now

In December 2024, Google announced that its new quantum chip, Willow, had demonstrated what’s called “beyond breakeven”, when its logical qubits worked better than the constituent parts and even kept on improving as it scaled up.

Lidar says right now the development of this technology is happening very fast:

“For quantum computing to scale and to take off is going to still take some real science breakthroughs, some real engineering breakthroughs, and probably overcoming some yet unforeseen surprises before we get to the point of true quantum utility. With that caution in mind, I think it’s still very fair to say that we are going to see truly functional, practical quantum computers kicking into gear, helping us solve real-life problems, within the next decade or so.”

Listen to Lidar explain more about how quantum computers and quantum error correction works on The Conversation Weekly podcast.


This episode of The Conversation Weekly was written and produced by Gemma Ware with assistance from Katie Flood and Mend Mariwany. Sound design was by Michelle Macklem, and theme music by Neeta Sarl.

Clips in this episode from Google Quantum AI and 10 Hours Channel.

You can find us on Instagram at theconversationdotcom or via e-mail. You can also subscribe to The Conversation’s free daily e-mail here.

Listen to The Conversation Weekly via any of the apps listed above, download it directly via our RSS feed or find out how else to listen here.

Advertisement
Find your perfect chandelier for living room, bedroom, dining room. Shop now

Gemma Ware, Host, The Conversation Weekly Podcast, The Conversation

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Author


Discover more from Daily News

Subscribe to get the latest posts sent to your email.

Continue Reading

Trending