Nature
What’s driving re-burns across California and the West?
As climate change sparks more new fires in old burn areas, understanding the underlying causes can help shape land-management strategies
Newswise — LOS ALAMOS, N.M. — Seasonal temperature, moisture loss from plants and wind speed are what primarily drive fires that sweep across the same landscape multiple times, a new study reveals. These findings and others could help land managers plan more effective treatments in areas susceptible to fire, particularly in the fire-ravaged wildland-urban interfaces of California.
“Rapid climate change is the force behind these re-burns, which are increasing across the West at roughly the same rate as single-burn fires,” said Kurt Solander, a hydrologist at Los Alamos National Laboratory. Solander is corresponding author of the artificial-intelligence-based paper in the journal Environmental Research: Climate. “Predictive computer models of re-burns are thus essential to better understand their causes so that forest management practices, such as prescribed burns and forest thinning, can be updated to account for these events.”
The study defined re-burns as areas that burned multiple times over 10 to 20 years. Other factors contributing to re-burns include monthly minimum and maximum temperatures, canopy moisture levels, precipitation, runoff and more.
Re-burns threatening more of the West
Climate change is sparking more re-burns across the American West, Solander said, on a frequency comparable to single-burn fires. The study applied two forms of artificial intelligence to data about re-burns that occurred between 1984-2018 for the 11 Western U.S. states, an area of about 34,000 square miles and roughly equal to the size of Indiana. The study also analyzed data specifically from California.
To understand the role of people in these fires, the researchers zoomed in on re-burns that occurred in the wildland-urban interface. That included areas with more than 2.4 houses per square mile and covered at least 50% by wildland vegetation and areas with higher settlement densities and less than 50% wildland vegetation coverage lying within at least a mile and a half of heavily forested land.
California was the only state where the rate of increase in the number of re-burns was consistently higher in the wildland-urban interfaces across all time periods, suggesting a stronger influence there by human activity.
“Human activity is so important in California because it causes about 90% of ignitions, versus much lower levels in other areas of the West, where lightning causes more fires,” Solander said. Human activity includes everything from an out-of-control campfire to a downed power line or the hitch of a trailer dragging on pavement and causing sparks, he said.
The massive, historic Camp Fire in California in 2018 was caused by power lines and burned 153,336 acres, destroyed 18,804 structures and resulted in 85 civilian fatalities. “The fire burned across land that had experienced about a dozen fires in the previous two decades,” Solander said.
By understanding the conditions that fuel re-burns and being able to predict where they might occur, agencies responsible for wildfire mitigation can focus more of their efforts on prescribed burns and thinning and possibly come up with novel effective treatment strategies that are more resistant to re-burns in those areas, Solander said.
The paper: “The drivers and predictability of wildfire re-burns in the western United States,” Environmental Research: Climate. DOI: 10.1088/2752-5295/acb079
The funding: Information Science and Technology Institute at Los Alamos National Laboratory.
Source: Los Alamos National Laboratory
Discover more from Daily News
Subscribe to get the latest posts sent to your email.
Nature
“Dolphins: The Ocean’s Overachievers”
Ah, dolphins. The ocean’s golden retrievers. If the sea had a valedictorian, it would be a dolphin—wearing a tiny graduation cap, flipping its tail, and probably showing off by solving a Rubik’s Cube underwater. These marine marvels are the ultimate overachievers of the aquatic world, and frankly, they make the rest of us look bad.
Dolphins
First off, dolphins are ridiculously smart. Scientists say they’re second only to humans in intelligence, which is both impressive and mildly insulting. I mean, have you ever seen a dolphin try to assemble IKEA furniture? No, because they’re too busy inventing underwater sonar and teaching each other how to use sponges as tools. Meanwhile, I’m over here struggling to open a bag of chips without ripping it in half.
And let’s talk about their social lives. Dolphins are the ultimate extroverts. They travel in pods, which is basically the ocean’s version of a group chat that never stops buzzing. They’re always playing, gossiping, and probably roasting each other about who’s the slowest swimmer. They even have names for each other! Can you imagine? “Hey, Flipper, pass the seaweed!” “Nice one, Bubbles, but I’m busy teaching this octopus how to high-five.”
But here’s the kicker: dolphins are also pranksters. They’ve been known to blow bubbles and then swim through them like it’s some kind of underwater TikTok trend. They’ll also play catch with pufferfish, not because they’re hungry, but because the pufferfish release toxins that give them a little “buzz.” That’s right—dolphins are out here getting high on pufferfish while the rest of us are debating whether pineapple belongs on pizza.
And don’t even get me started on their acrobatics. Dolphins can leap 20 feet out of the water, spin in midair, and land gracefully like they’re auditioning for Dancing with the Stars: Ocean Edition. Meanwhile, I trip over my own feet walking to the fridge.
So, what’s the takeaway here? Dolphins are smarter, cooler, and more fun than most of us will ever be. They’re the ocean’s MVP, and honestly, they know it. But hey, at least we have thumbs, right? …Oh wait, they’ve probably figured out how to use those too by now.
Stay salty, my friends. And if you see a dolphin, just bow. They deserve it. 🐬
For further reading on dolphin research, check out these related links:
https://royalsocietypublishing.org/doi/10.1098/rspb.2018.0948
https://www.wilddolphinproject.org/the-evolution-of-dolphin-research-embracing-new-technology/
https://manoa.hawaii.edu/news/article.php?aId=13420
The science section of our news blog STM Daily News provides readers with captivating and up-to-date information on the latest scientific discoveries, breakthroughs, and innovations across various fields. We offer engaging and accessible content, ensuring that readers with different levels of scientific knowledge can stay informed. Whether it’s exploring advancements in medicine, astronomy, technology, or environmental sciences, our science section strives to shed light on the intriguing world of scientific exploration and its profound impact on our daily lives. From thought-provoking articles to informative interviews with experts in the field, STM Daily News Science offers a harmonious blend of factual reporting, analysis, and exploration, making it a go-to source for science enthusiasts and curious minds alike. https://stmdailynews.com/category/science/
STM Daily News is a multifaceted podcast that explores a wide range of topics, from life and consumer issues to the latest in food and beverage trends. Our discussions dive into the realms of science, covering everything from space and Earth to nature, artificial intelligence, and astronomy. We also celebrate the amateur sports scene, highlighting local athletes and events, including our special segment on senior Pickleball, where we report on the latest happenings in this exciting community. With our diverse content, STM Daily News aims to inform, entertain, and engage listeners, providing a comprehensive look at the issues that matter most in our daily lives. https://stories-this-moment.castos.com/
Discover more from Daily News
Subscribe to get the latest posts sent to your email.
The Earth
La Niña Weather Pattern to Disrupt Arizona Winter: What to Expect for 2024-2025
Arizona is expected to have a warmer, drier winter due to a developing La Niña, though uncertainty remains about precipitation levels, highlighting the complexity of weather patterns.
La Niña
As we prepare for the winter months, the National Oceanic and Atmospheric Administration (NOAA) has released its forecast for the 2024-2025 winter season, and it looks like Arizona might be in for a significant change. According to meteorologists, the state is likely to experience a warmer and drier winter than usual due to the influence of a developing La Niña weather pattern.
Understanding La Niña
La Niña is a climate phenomenon that occurs in the Eastern Pacific Ocean. Typically, trade winds push warm surface waters toward Asia, but when these winds are stronger than normal, they lead to cooler ocean waters in the Eastern Pacific. This shift in ocean temperatures can have widespread effects on weather patterns across the United States.
In Arizona, La Niña usually correlates with above-normal temperatures and below-normal precipitation. This year, however, NOAA indicates that the La Niña phenomenon may be on the weaker side. While moderate to strong La Niña events are more likely to cause significant dry spells, the current weak La Niña means that the impacts may not be as pronounced.
Is Drier Always Drier?
It’s important to note that not every La Niña leads to a dry winter. According to the National Weather Service, there remains a 10% to 30% chance of experiencing wetter than normal conditions this winter. This uncertainty highlights the complexity of weather patterns and the need for ongoing monitoring and analysis.
Factors Influencing the Forecast
The official winter outlook takes into account various factors beyond La Niña, including the latest climate models and the broader context of climate change. These elements play a crucial role in shaping the weather we can expect in the coming months.
As we move closer to winter, it will be essential for residents and visitors in Arizona to stay informed about potential weather changes and be prepared for a season that might not follow the traditional patterns.
Preparing for the Winter
For those living in Arizona, it might be worth considering how a warmer, drier winter could affect your plans, from water conservation efforts to outdoor activities. Staying updated with NOAA and local weather forecasts will be crucial as we approach the winter months.
As winter approaches, it’s clear that La Niña will play a key role in shaping the weather across Arizona. While there is still some uncertainty regarding precipitation levels, one thing is for sure: it’s going to be an interesting season ahead.
Resources
- NOAA
- National Weather Service
- Climate Prediction Center
- 12 News Phoenix: https://www.12news.com/article/weather/noaa-expects-slowly-developing-la-nina-what-that-means-for-arizonas-winter/75-d82132c5-124f-4a94-92b7-b1aae5f43b0d
Stay warm and stay informed this winter!
The science section of our news blog STM Daily News provides readers with captivating and up-to-date information on the latest scientific discoveries, breakthroughs, and innovations across various fields. We offer engaging and accessible content, ensuring that readers with different levels of scientific knowledge can stay informed. Whether it’s exploring advancements in medicine, astronomy, technology, or environmental sciences, our science section strives to shed light on the intriguing world of scientific exploration and its profound impact on our daily lives. From thought-provoking articles to informative interviews with experts in the field, STM Daily News Science offers a harmonious blend of factual reporting, analysis, and exploration, making it a go-to source for science enthusiasts and curious minds alike. https://stmdailynews.com/category/science/
STM Daily News is a vibrant news blog dedicated to sharing the brighter side of human experiences. Emphasizing positive, uplifting stories, the site focuses on delivering inspiring, informative, and well-researched content. With a commitment to accurate, fair, and responsible journalism, STM Daily News aims to foster a community of readers passionate about positive change and engaged in meaningful conversations. Join the movement and explore stories that celebrate the positive impacts shaping our world.
Discover more from Daily News
Subscribe to get the latest posts sent to your email.
Science
Separating out signals recorded at the seafloor
Roger Bryant and David Fike’s research reveals that pyrite sulfur isotopes mainly reflect local conditions, shifting fundamental understanding of oceanic environmental studies.
Newswise — Blame it on plate tectonics. The deep ocean is never preserved, but instead is lost to time as the seafloor is subducted. Geologists are mostly left with shallower rocks from closer to the shoreline to inform their studies of Earth history.
Signals from the Sea
“We have only a good record of the deep ocean for the last ~180 million years,” said David Fike, the Glassberg/Greensfelder Distinguished University Professor of Earth, Environmental, and Planetary Sciences in Arts & Sciences at Washington University in St. Louis. “Everything else is just shallow-water deposits. So it’s really important to understand the bias that might be present when we look at shallow-water deposits.”
One of the ways that scientists like Fike use deposits from the seafloor is to reconstruct timelines of past ecological and environmental change. Researchers are keenly interested in how and when oxygen began to build up in the oceans and atmosphere, making Earth more hospitable to life as we know it.
For decades they have relied on pyrite, the iron-sulfide mineral known as “fool’s gold,” as a sensitive recorder of conditions in the marine environment where it is formed. By measuring the bulk isotopic composition of sulfur in pyrite samples — the relative abundance of sulfur atoms with slightly different mass — scientists have tried to better understand ancient microbial activity and interpret global chemical cycles.
But the outlook for pyrite is not so shiny anymore. In a pair of companion papers published Nov. 24 in the journal Science, Fike and his collaborators show that variations in pyrite sulfur isotopes may not represent the global processes that have made them such popular targets of analysis.
Instead, Fike’s research demonstrates that pyritte responds predominantly to local processes that should not be taken as representative of the whole ocean. A new microanalysis approach developed at Washington University helped the researchers to separate out signals in pyrite that reveal the relative influence of microbes and that of local climate.
For the first study, Fike worked with Roger Bryant, who completed his graduate studies at Washington University, to examine the grain-level distribution of pyrite sulfur isotope compositions in a sample of recent glacial-interglacial sediments. They developed and used a cutting-edge analytical technique with the secondary-ion mass spectrometer (SIMS) in Fike’s laboratory.
“We analyzed every individual pyrite crystal that we could find and got isotopic values for each one,” Fike said. By considering the distribution of results from individual grains, rather than the average (or bulk) results, the scientists showed that it is possible to tease apart the role of the physical properties of the depositional environment, like the sedimentation rate and the porosity of the sediments, from the microbial activity in the seabed.
“We found that even when bulk pyrite sulfur isotopes changed a lot between glacials and interglacials, the minima of our single grain pyrite distributions remained broadly constant,” Bryant said. “This told us that microbial activity did not drive the changes in bulk pyrite sulfur isotopes and refuted one of our major hypotheses.”
“Using this framework, we’re able to go in and look at the separate roles of microbes and sediments in driving the signals,” Fike said. “That to me represents a huge step forward in being able to interpret what is recorded in these signals.”
In the second paper, led by Itay Halevy of the Weizmann Institute of Science and co-authored by Fike and Bryant, the scientists developed and explored a computer model of marine sediments, complete with mathematical representations of the microorganisms that degrade organic matter and turn sulfate into sulfide and the processes that trap that sulfide in pyrite.
“We found that variations in the isotopic composition of pyrite are mostly a function of the depositional environment in which the pyrite formed,” Halevy said. The new model shows that a range of parameters of the sedimentary environment affect the balance between sulfate and sulfide consumption and resupply, and that this balance is the major determinant of the sulfur isotope composition of pyrite.
“The rate of sediment deposition on the seafloor, the proportion of organic matter in that sediment, the proportion of reactive iron particles, the density of packing of the sediment as it settles to the seafloor — all of these properties affect the isotopic composition of pyrite in ways that we can now understand,” he said.
Importantly, none of these properties of the sedimentary environment are strongly linked to the global sulfur cycle, to the oxidation state of the global ocean, or essentially any other property that researchers have traditionally used pyrite sulfur isotopes to reconstruct, the scientists said.
“The really exciting aspect of this new work is that it gives us a predictive model for how we think other pyrite records should behave,” Fike said. “For example, if we can interpret other records — and better understand that they are driven by things like local changes in sedimentation, rather than global parameters about ocean oxygen state or microbial activity — then we can try to use this data to refine our understanding of sea level change in the past.”
Source: Washington University in St. Louis
The science section of our news blog STM Daily News provides readers with captivating and up-to-date information on the latest scientific discoveries, breakthroughs, and innovations across various fields. We offer engaging and accessible content, ensuring that readers with different levels of scientific knowledge can stay informed. Whether it’s exploring advancements in medicine, astronomy, technology, or environmental sciences, our science section strives to shed light on the intriguing world of scientific exploration and its profound impact on our daily lives. From thought-provoking articles to informative interviews with experts in the field, STM Daily News Science offers a harmonious blend of factual reporting, analysis, and exploration, making it a go-to source for science enthusiasts and curious minds alike. https://stmdailynews.com/category/science/
Discover more from Daily News
Subscribe to get the latest posts sent to your email.
-
Urbanism1 year ago
Signal Hill, California: A Historic Enclave Surrounded by Long Beach
-
News2 years ago
Diana Gregory Talks to us about Diana Gregory’s Outreach Services
-
Senior Pickleball Report2 years ago
The Absolute Most Comfortable Pickleball Shoe I’ve Ever Worn!
-
STM Blog2 years ago
World Naked Gardening Day: Celebrating Body Acceptance and Nature
-
Senior Pickleball Report2 years ago
ACE PICKLEBALL CLUB TO DEBUT THEIR HIGHLY ANTICIPATED INDOOR PICKLEBALL FRANCHISES IN THE US, IN EARLY 2023
-
Travel2 years ago
Unique Experiences at the CitizenM
-
Automotive2 years ago
2023 Nissan Sentra pricing starts at $19,950
-
Senior Pickleball Report2 years ago
“THE PEOPLE’S CHOICE AWARDS OF PICKLEBALL” – VOTING OPEN