Connect with us

Science

NASA shoots laser beam at Moon for research

NASA successfully bounced laser beams off of the Lunar Reconnaissance Orbiter (LRO).

Published

on

NASA recently made headlines with the successful bouncing of laser beams off of the Lunar Reconnaissance Orbiter (LRO). The experiment, conducted by the Lunar Orbiter Laser Altimeter (LOLA) team at NASA’s Goddard Space Flight Center, aimed to measure the distance between the LRO and the Earth with unprecedented accuracy.

https://www.nasa.gov/feature/goddard/2020/laser-beams-reflected-between-earth-and-moon-boost-science

https://q5i.09c.myftpupload.com/category/science/

Author

  • Rod Washington

    Rod: A creative force, blending words, images, and flavors. Blogger, writer, filmmaker, and photographer. Cooking enthusiast with a sci-fi vision. Passionate about his upcoming series and dedicated to TNC Network. Partnered with Rebecca Washington for a shared journey of love and art.

    View all posts

Discover more from Daily News

Subscribe to get the latest posts sent to your email.

Rod: A creative force, blending words, images, and flavors. Blogger, writer, filmmaker, and photographer. Cooking enthusiast with a sci-fi vision. Passionate about his upcoming series and dedicated to TNC Network. Partnered with Rebecca Washington for a shared journey of love and art.

News

3D printing will help space pioneers make homes, tools and other stuff they need to colonize the Moon and Mars

Published

on

3D printing will help space pioneers make homes, tools and other stuff they need to colonize the Moon and Mars

file 20250120 15 ugid1c.jpg?ixlib=rb 4.1
3D printing could make many of the components for future structures on Mars. 3000ad/iStock via Getty Images Plus

Sven Bilén, Penn State

Throughout history, when pioneers set out across uncharted territory to settle in distant lands, they carried with them only the essentials: tools, seeds and clothing. Anything else would have to come from their new environment.

So they built shelter from local timber, rocks and sod; foraged for food and cultivated the soil beneath their feet; and fabricated tools from whatever they could scrounge up. It was difficult, but ultimately the successful ones made everything they needed to survive.

Something similar will take place when humanity leaves Earth for destinations such as the Moon and Mars – although astronauts will face even greater challenges than, for example, the Vikings did when they reached Greenland and Newfoundland. Not only will the astronauts have limited supplies and the need to live off the land; they won’t even be able to breathe the air.

Instead of axes and plows, however, today’s space pioneers will bring 3D printers. As an engineer and professor who is developing technologies to extend the human presence beyond Earth, I focus my work and research on these remarkable machines.

3D printers will make the tools, structures and habitats space pioneers need to survive in a hostile alien environment. They will enable long-term human presence on the Moon and Mars.

An astronaut holding a wrench poses for the camera.
NASA astronaut Barry Wilmore holds a 3D-printed wrench made aboard the International Space Station. NASA

From hammers to habitats

On Earth, 3D printing can fabricate, layer by layer, thousands of things, from replacement hips to hammers to homes. These devices take raw materials, such as plastic, concrete or metal, and deposit it on a computerized programmed path to build a part. It’s often called “additive manufacturing,” because you keep adding material to make the part, rather than removing material, as is done in conventional machining.

Already, 3D printing in space is underway. On the International Space Station, astronauts use 3D printers to make tools and spare parts, such as ratchet wrenches, clamps and brackets. Depending on the part, printing time can take from around 30 minutes to several hours.

For now, the print materials are mostly hauled up from Earth. But NASA has also begun recycling some of those materials, such as waste plastic, to make new parts with the Refabricator, an advanced 3D printer installed in 2019.

Advertisement
image 101376000 12222003

Manufacturing in space

You may be wondering why space explorers can’t simply bring everything they need with them. After all, that’s how the International Space Station was built decades ago – by hauling tons of prefabricated components from Earth.

But that’s impractical for building habitats on other worlds. Launching materials into space is incredibly expensive. Right now, every pound launched aboard a rocket just to get to low Earth orbit costs thousands of dollars. To get materials to the Moon, NASA estimates the initial cost at around US$500,000 per pound.

Still, manufacturing things in space is a challenge. In the microgravity of space, or the reduced gravity of the Moon or Mars, materials behave differently than they do on Earth. Decrease or remove gravity, and materials cool and recrystallize differently. The Moon has one-sixth the gravity of Earth; Mars, about two-fifths. Engineers and scientists are working now to adapt 3D printers to function in these conditions.

An illustration of an astronaut looking at a base camp on Mars. 3D Printing
An artist’s impressions of what a Mars base camp might look like. peepo/E+ via Getty Images

Using otherworldly soil

On alien worlds, rather than plastic or metal, 3D printers will use the natural resources found in these environments. But finding the right raw materials is not easy. Habitats on the Moon and Mars must protect astronauts from the lack of air, extreme temperatures, micrometeorite impacts and radiation.

Regolith, the fine, dusty, sandlike particles that cover both the lunar and Martian surfaces, could be a primary ingredient to make these dwellings. Think of the regolith on both worlds as alien dirt – unlike Earth soil, it contains few nutrients, and as far as we know, no living organisms. But it might be a good raw material for 3D printing.

My colleagues began researching this possibility by first examining how regular cement behaves in space. I am now joining them to develop techniques for turning regolith into a printable material and to eventually test these on the Moon.

But obtaining otherworldly regolith is a problem. The regolith samples returned from the Moon during the Apollo missions in the 1960s and 70s are precious, difficult if not impossible to access for research purposes. So scientists are using regolith simulants to test ideas. Actual regolith may react quite differently than our simulants. We just don’t know.

What’s more, the regolith on the Moon is very different from what’s found on Mars. Martian regolith contains iron oxide –that’s what gives it a reddish color – but Moon regolith is mostly silicates; it’s much finer and more angular. Researchers will need to learn how to use both types in a 3D printer. https://www.youtube.com/embed/J1TWlNWHrsw?wmode=transparent&start=0 See models of otherworldly habitats.

Advertisement
image 101376000 12222003

Applications on Earth

NASA’s Moon-to-Mars Planetary Autonomous Construction Technology program, also known as MMPACT, is advancing the technology needed to print these habitats on alien worlds.

Among the approaches scientists are now exploring: a regolith-based concrete made in part from surface ice; melting the regolith at high temperatures, and then using molds to form it while it’s a liquid; and sintering, which means heating the regolith with concentrated sunlight, lasers or microwaves to fuse particles together without the need for binders.

Along those lines, my colleagues and I developed a Martian concrete we call MarsCrete, a material we used to 3D-print a small test structure for NASA in 2017.

Then, in May 2019, using another type of special concrete, we 3D-printed a one-third scale prototype Mars habitat that could support everything astronauts would need for long-term survival, including living, sleeping, research and food-production modules.

That prototype showcased the potential, and the challenges, of building housing on the red planet. But many of these technologies will benefit people on Earth too.

In the same way astronauts will make sustainable products from natural resources, homebuilders could make concretes from binders and aggregates found locally, and maybe even from recycled construction debris. Engineers are already adapting the techniques that could print Martian habitats to address housing shortages here at home. Indeed, 3D-printed homes are already on the market.

Meanwhile, the move continues toward establishing a human presence outside the Earth. Artemis III, now scheduled for liftoff in 2027, will be the first human Moon landing since 1972. A NASA trip to Mars could happen as early as 2035.

Advertisement
image 101376000 12222003

But wherever people go, and whenever they get there, I’m certain that 3D printers will be one of the primary tools to let human beings live off alien land.

Sven Bilén, Professor of Engineering Design, Electrical Engineering and Aerospace Engineering, Penn State

This article is republished from The Conversation under a Creative Commons license. Read the original article.

 


Discover more from Daily News

Subscribe to get the latest posts sent to your email.

Continue Reading

The Earth

How many types of insects are there in the world?

Published

on

insects
This is a close-up photo of an ordinary garden fly. Amith Nag Photography/Moment via Getty Images
Nicholas Green, Kennesaw State University Curious Kids is a series for children of all ages. If you have a question you’d like an expert to answer, send it to CuriousKidsUS@theconversation.com.
How many types of insects are there in the world? – Sawyer, age 8, Fuquay-Varina, North Carolina

Exploring anywhere on Earth, look closely and you’ll find insects. Check your backyard and you may see ants, beetles, crickets, wasps, mosquitoes and more. There are more kinds of insects than there are mammals, birds and plants combined. This fact has fascinated scientists for centuries. One of the things biologists like me do is classify all living things into categories. Insects belong to a phylum called Arthropoda – animals with hard exoskeletons and jointed feet. All insects are arthropods, but not all arthropods are insects. For instance, spiders, lobsters and millipedes are arthropods, but they’re not insects. Instead, insects are a subgroup within Arthropoda, a class called “Insecta,” that is characterized by six legs, two antennae and three body segments – head, abdomen and the thorax, which is the part of the body between the head and abdomen.
A diagram of an ant, pointing out various body parts, including the antennae, thorax and legs.
The mandibles of the ants are its jaws; the petiole is the ant’s waist. Vector Mine/iStock via Getty Images Plus
Most insects also have wings, although a few, like fleas, don’t. All have compound eyes, which means insects see very differently from the way people see. Instead of one lens per eye, they have many: a fly has 5,000 lenses; a dragonfly has 30,000. These types of eyes, though not great for clarity, are excellent at detecting movement.

What is a species?

All insects descend from a common ancestor that lived about about 480 million years ago. For context, that’s about 100 million years before any of our vertebrate ancestors – animals with a backbone – ever walked on land. A species is the most basic unit that biologists use to classify living things. When people use words like “ant” or “fly” or “butterfly” they are referring not to species, but to categories that may contain hundreds, thousands or tens of thousands of species. For example, about 18,000 species of butterfly exist – think monarch, zebra swallowtail or cabbage white. Basically, species are a group that can interbreed with each other, but not with other groups. One obvious example: bees can’t interbreed with ants. But brown-belted bumblebees and red-belted bumblebees can’t interbreed either, so they are different species of bumblebee. Each species has a unique scientific name – like Bombus griseocollis for the brown-belted bumblebee – so scientists can be sure which species they’re talking about.
This close-up of a dragonfly reveals its blue head, bulging compound eyes and black antennae.
This is what a dragonfly looks like up close. Dieter Meyrl/E+ via Getty Images

Quadrillions of ants

Counting the exact number of insect species is probably impossible. Every year, some species go extinct, while some evolve anew. Even if we could magically freeze time and survey the entire Earth all at once, experts would disagree on the distinctiveness or identity of some species. So instead of counting, researchers use statistical analysis to make an estimate. One scientist did just that. He published his answer in a 2018 research paper. His calculations showed there are approximately 5.5 million insect species, with the correct number almost certainly between 2.6 and 7.2 million. Beetles alone account for almost one-third of the number, about 1.5 million species. By comparison, there are “only” an estimated 22,000 species of ants. This and other studies have also estimated about 3,500 species of mosquitoes, 120,000 species of flies and 30,000 species of grasshoppers and crickets. The estimate of 5.5 million species of insects is interesting. What’s even more remarkable is that because scientists have found only about 1 million species, that means more than 4.5 million species are still waiting for someone to discover them. In other words, over 80% of the Earth’s insect biodiversity is still unknown. Add up the total population and biomass of the insects, and the numbers are even more staggering. The 22,000 species of ants comprise about 20,000,000,000,000,000 individuals – that’s 20 quadrillion ants. And if a typical ant weighs about 0.0001 ounces (3 milligrams) – or one ten-thousandth of an ounce – that means all the ants on Earth together weigh more than 132 billion pounds (about 60 billion kilograms). That’s the equivalent of about 7 million school buses, 600 aircraft carriers or about 20% of the weight of all humans on Earth combined.
For every person on Earth, it’s estimated there are 200 million insects.

Many insect species are going extinct

All of this has potentially huge implications for our own human species. Insects affect us in countless ways. People depend on them for crop pollination, industrial products and medicine. Other insects can harm us by transmitting disease or eating our crops. Most insects have little to no direct impact on people, but they are integral parts of their ecosystems. This is why entomologists – bug scientists – say we should leave insects alone as much as possible. Most of them are harmless to people, and they are critical to the environment. It is sobering to note that although millions of undiscovered insect species may be out there, many will go extinct before people have a chance to discover them. Largely due to human activity, a significant proportion of Earth’s biodiversity – including insects – may ultimately be forever lost.
Hello, curious kids! Do you have a question you’d like an expert to answer? Ask an adult to send your question to CuriousKidsUS@theconversation.com. Please tell us your name, age and the city where you live. And since curiosity has no age limit – adults, let us know what you’re wondering, too. We won’t be able to answer every question, but we will do our best. Nicholas Green, Assistant Professor of Biology, Kennesaw State University This article is republished from The Conversation under a Creative Commons license. Read the original article.

Discover more from Daily News

Subscribe to get the latest posts sent to your email.

Continue Reading

Lifestyle

Bird flu could be on the cusp of transmitting between humans − but there are ways to slow down viral evolution

Published

on

file 20250320 56 9y7zti.jpg?ixlib=rb 4.1
Workers who are in frequent contact with potentially sick animals are at high risk of bird flu infection. Costfoto/NurPhoto via Getty Images
Ron Barrett, Macalester College Disease forecasts are like weather forecasts: We cannot predict the finer details of a particular outbreak or a particular storm, but we can often identify when these threats are emerging and prepare accordingly. The viruses that cause avian influenza are potential threats to global health. Recent animal outbreaks from a subtype called H5N1 have been especially troubling to scientists. Although human infections from H5N1 have been relatively rare, there have been a little more than 900 known cases globally since 2003 – nearly 50% of these cases have been fatal – a mortality rate about 20 times higher than that of the 1918 flu pandemic. If the worst of these rare infections ever became common among people, the results could be devastating. Approaching potential disease threats from an anthropological perspective, my colleagues and I recently published a book called “Emerging Infections: Three Epidemiological Transitions from Prehistory to the Present” to examine the ways human behaviors have shaped the evolution of infectious diseases, beginning with their first major emergence in the Neolithic period and continuing for 10,000 years to the present day. Viewed from this deep time perspective, it becomes evident that H5N1 is displaying a common pattern of stepwise invasion from animal to human populations. Like many emerging viruses, H5N1 is making incremental evolutionary changes that could allow it to transmit between people. The periods between these evolutionary steps present opportunities to slow this process and possibly avert a global disaster.

Spillover and viral chatter

When a disease-causing pathogen such as a flu virus is already adapted to infect a particular animal species, it may eventually evolve the ability to infect a new species, such as humans, through a process called spillover. Spillover is a tricky enterprise. To be successful, the pathogen must have the right set of molecular “keys” compatible with the host’s molecular “locks” so it can break in and out of host cells and hijack their replication machinery. Because these locks often vary between species, the pathogen may have to try many different keys before it can infect an entirely new host species. For instance, the keys a virus successfully uses to infect chickens and ducks may not work on cattle and humans. And because new keys can be made only through random mutation, the odds of obtaining all the right ones are very slim. Given these evolutionary challenges, it is not surprising that pathogens often get stuck partway into the spillover process. A new variant of the pathogen might be transmissible from an animal only to a person who is either more susceptible due to preexisting illness or more likely to be infected because of extended exposure to the pathogen. Even then, the pathogen might not be able to break out of its human host and transmit to another person. This is the current situation with H5N1. For the past year, there have been many animal outbreaks in a variety of wild and domestic animals, especially among birds and cattle. But there have also been a small number of human cases, most of which have occurred among poultry and dairy workers who worked closely with large numbers of infected animals.
Diagram depicting three stages, the first of bird to bird, the second bird to human and duck, and the third duck to duck and human to human
Pathogen transmission can be modeled in three stages. In Stage 1, the pathogen can be transmitted only between nonhuman animals. In stage 2, the pathogen can also be transmitted to humans, but it is not yet adapted for human-to-human transmission. In Stage 3, the pathogen is fully capable of human-to-human transmission. Ron Barrett, CC BY-SA
Epidemiologists call this situation viral chatter: when human infections occur only in small, sporadic outbreaks that appear like the chattering signals of coded radio communications – tiny bursts of unclear information that may add up to a very ominous message. In the case of viral chatter, the message would be a human pandemic. Sporadic, individual cases of H5N1 among people suggest that human-to-human transmission may likely occur at some point. But even so, no one knows how long or how many steps it would take for this to happen. Influenza viruses evolve rapidly. This is partly because two or more flu varieties can infect the same host simultaneously, allowing them to reshuffle their genetic material with one another to produce entirely new varieties.
Diagram showing a virus with genetic strands derived from two other viruses
Genetic reshuffling – aka antigenic shift – between a highly pathogenic strain of avian influenza and a strain of human influenza could create a new strain that’s even more infectious among people. Eunsun Yoo/Biomolecules & Therapeutics, CC BY-NC
These reshuffling events are more likely to occur when there is a diverse range of host species. So it is particularly concerning that H5N1 is known to have infected at least 450 different animal species. It may not be long before the viral chatter gives way to larger human epidemics.

Reshaping the trajectory

The good news is that people can take basic measures to slow down the evolution of H5N1 and potentially reduce the lethality of avian influenza should it ever become a common human infection. But governments and businesses will need to act. People can start by taking better care of food animals. The total weight of the world’s poultry is greater than all wild bird species combined. So it is not surprising that the geography of most H5N1 outbreaks track more closely with large-scale housing and international transfers of live poultry than with the nesting and migration patterns of wild aquatic birds. Reducing these agricultural practices could help curb the evolution and spread of H5N1.
Back of truck filled with chickens in stacked cages
Large-scale commercial transport of domesticated animals is associated with the evolution and spread of new influenza varieties. ben/Flickr, CC BY-SA
People can also take better care of themselves. At the individual level, most people can vaccinate against the common, seasonal influenza viruses that circulate every year. At first glance this practice may not seem connected to the emergence of avian influenza. But in addition to preventing seasonal illness, vaccination against common human varieties of the virus will reduce the odds of it mixing with avian varieties and giving them the traits they need for human-to-human transmission. At the population level, societies can work together to improve nutrition and sanitation in the world’s poorest populations. History has shown that better nutrition increases overall resistance to new infections, and better sanitation reduces how much and how often people are exposed to new pathogens. And in today’s interconnected world, the disease problems of any society will eventually spread to every society. For more than 10,000 years, human behaviors have shaped the evolutionary trajectories of infectious diseases. Knowing this, people can reshape these trajectories for the better.The Conversation Ron Barrett, Professor of Anthropology, Macalester College This article is republished from The Conversation under a Creative Commons license. Read the original article.

Want more stories 👋
"Your morning jolt of Inspiring & Interesting Stories!"

Sign up to receive awesome articles directly to your inbox.

We don’t spam! Read our privacy policy for more info.

STM Coffee Newsletter 1

Discover more from Daily News

Subscribe to get the latest posts sent to your email.

Continue Reading

Trending