(June 3, 2022) — The Progress 81 cargo craft approaches the International Space Station for a docking to the Zvezda service module’s rear port. In the foreground, is the Soyuz MS-21 crew ship docked to the Prichal docking module on the orbiting lab’s Russian segment. Credits: NASA Johnson
NASA will provide live coverage of the launch and docking of a Roscosmos cargo spacecraft carrying about three tons of food, fuel, and supplies for the Expedition 68 crew aboard the International Space Station.
The unpiloted Progress 83 spacecraft is scheduled to launch at 1:15 a.m. EST (11:15 a.m. Baikonur time) Thursday, Feb. 9, on a Soyuz rocket from the Baikonur Cosmodrome in Kazakhstan. Coverage will begin at 1 a.m. on NASA Television, the NASA app, and the agency’s website.
The Progress will be placed into an orbit for a two-day journey to the space station, culminating in an automatic docking to the aft port of the Zvezda service module at 3:47 a.m. Saturday, Feb. 11. NASA TV coverage of rendezvous and docking will begin at 3 a.m.
The International Space Station is a convergence of science, technology, and human innovation, enabling research and technology demonstrations not possible on Earth. NASA recently recognized 22 years of continuous human presence aboard the orbiting laboratory, which has hosted 263 people and a variety of international and commercial spacecraft. The space station remains the springboard to NASA’s next steps in exploration including Artemis missions to the Moon and ultimately, human exploration of Mars.
Learn more about the International Space Station, its research, and crew, at:
Throughout history, when pioneers set out across uncharted territory to settle in distant lands, they carried with them only the essentials: tools, seeds and clothing. Anything else would have to come from their new environment.
So they built shelter from local timber, rocks and sod; foraged for food and cultivated the soil beneath their feet; and fabricated tools from whatever they could scrounge up. It was difficult, but ultimately the successful ones made everything they needed to survive.
Something similar will take place when humanity leaves Earth for destinations such as the Moon and Mars – although astronauts will face even greater challenges than, for example, the Vikings did when they reached Greenland and Newfoundland. Not only will the astronauts have limited supplies and the need to live off the land; they won’t even be able to breathe the air.
Instead of axes and plows, however, today’s space pioneers will bring 3D printers. As an engineer and professor who is developing technologies to extend the human presence beyond Earth, I focus my work and research on these remarkable machines.
3D printers will make the tools, structures and habitats space pioneers need to survive in a hostile alien environment. They will enable long-term human presence on the Moon and Mars.
NASA astronaut Barry Wilmore holds a 3D-printed wrench made aboard the International Space Station. NASA
From hammers to habitats
On Earth, 3D printing can fabricate, layer by layer, thousands of things, from replacement hips to hammers to homes. These devices take raw materials, such as plastic, concrete or metal, and deposit it on a computerized programmed path to build a part. It’s often called “additive manufacturing,” because you keep adding material to make the part, rather than removing material, as is done in conventional machining.
For now, the print materials are mostly hauled up from Earth. But NASA has also begun recycling some of those materials, such as waste plastic, to make new parts with the Refabricator, an advanced 3D printer installed in 2019.
Advertisement
Manufacturing in space
You may be wondering why space explorers can’t simply bring everything they need with them. After all, that’s how the International Space Station was built decades ago – by hauling tons of prefabricated components from Earth.
But that’s impractical for building habitats on other worlds. Launching materials into space is incredibly expensive. Right now, every pound launched aboard a rocket just to get to low Earth orbit costs thousands of dollars. To get materials to the Moon, NASA estimates the initial cost at around US$500,000 per pound.
Still, manufacturing things in space is a challenge. In the microgravity of space, or the reduced gravity of the Moon or Mars, materials behave differently than they do on Earth. Decrease or remove gravity, and materials cool and recrystallize differently. The Moon has one-sixth the gravity of Earth; Mars, about two-fifths. Engineers and scientists are working now to adapt 3D printers to function in these conditions.
On alien worlds, rather than plastic or metal, 3D printers will use the natural resources found in these environments. But finding the right raw materials is not easy. Habitats on the Moon and Mars must protect astronauts from the lack of air, extreme temperatures, micrometeorite impacts and radiation.
Regolith, the fine, dusty, sandlike particles that cover both the lunar and Martian surfaces, could be a primary ingredient to make these dwellings. Think of the regolith on both worlds as alien dirt – unlike Earth soil, it contains few nutrients, and as far as we know, no living organisms. But it might be a good raw material for 3D printing.
My colleagues began researching this possibility by first examining how regular cement behaves in space. I am now joining them to develop techniques for turning regolith into a printable material and to eventually test these on the Moon.
But obtaining otherworldly regolith is a problem. The regolith samples returned from the Moon during the Apollo missions in the 1960s and 70s are precious, difficult if not impossible to access for research purposes. So scientists are using regolith simulants to test ideas. Actual regolith may react quite differently than our simulants. We just don’t know.
What’s more, the regolith on the Moon is very different from what’s found on Mars. Martian regolith contains iron oxide –that’s what gives it a reddish color – but Moon regolith is mostly silicates; it’s much finer and more angular. Researchers will need to learn how to use both types in a 3D printer. https://www.youtube.com/embed/J1TWlNWHrsw?wmode=transparent&start=0 See models of otherworldly habitats.
Advertisement
Applications on Earth
NASA’s Moon-to-Mars Planetary Autonomous Construction Technology program, also known as MMPACT, is advancing the technology needed to print these habitats on alien worlds.
Among the approaches scientists are now exploring: a regolith-based concrete made in part from surface ice; melting the regolith at high temperatures, and then using molds to form it while it’s a liquid; and sintering, which means heating the regolith with concentrated sunlight, lasers or microwaves to fuse particles together without the need for binders.
Along those lines, my colleagues and I developed a Martian concrete we call MarsCrete, a material we used to 3D-print a small test structure for NASA in 2017.
Then, in May 2019, using another type of special concrete, we 3D-printed a one-third scale prototype Mars habitat that could support everything astronauts would need for long-term survival, including living, sleeping, research and food-production modules.
That prototype showcased the potential, and the challenges, of building housing on the red planet. But many of these technologies will benefit people on Earth too.
In the same way astronauts will make sustainable products from natural resources, homebuilders could make concretes from binders and aggregates found locally, and maybe even from recycled construction debris. Engineers are already adapting the techniques that could print Martian habitats to address housing shortages here at home. Indeed, 3D-printed homes are already on the market.
Meanwhile, the move continues toward establishing a human presence outside the Earth. Artemis III, now scheduled for liftoff in 2027, will be the first human Moon landing since 1972. A NASA trip to Mars could happen as early as 2035.
Advertisement
But wherever people go, and whenever they get there, I’m certain that 3D printers will be one of the primary tools to let human beings live off alien land.
Sven Bilén, Professor of Engineering Design, Electrical Engineering and Aerospace Engineering, Penn State
Workers who are in frequent contact with potentially sick animals are at high risk of bird flu infection.
Costfoto/NurPhoto via Getty ImagesRon Barrett, Macalester College
Disease forecasts are like weather forecasts: We cannot predict the finer details of a particular outbreak or a particular storm, but we can often identify when these threats are emerging and prepare accordingly.
The viruses that cause avian influenza are potential threats to global health. Recent animal outbreaks from a subtype called H5N1 have been especially troubling to scientists. Although human infections from H5N1 have been relatively rare, there have been a little more than 900 known cases globally since 2003 – nearly 50% of these cases have been fatal – a mortality rate about 20 times higher than that of the 1918 flu pandemic. If the worst of these rare infections ever became common among people, the results could be devastating.
Approaching potential disease threats from an anthropological perspective, my colleagues and I recently published a book called “Emerging Infections: Three Epidemiological Transitions from Prehistory to the Present” to examine the ways human behaviors have shaped the evolution of infectious diseases, beginning with their first major emergence in the Neolithic period and continuing for 10,000 years to the present day.
Viewed from this deep time perspective, it becomes evident that H5N1 is displaying a common pattern of stepwise invasion from animal to human populations. Like many emerging viruses, H5N1 is making incremental evolutionary changes that could allow it to transmit between people. The periods between these evolutionary steps present opportunities to slow this process and possibly avert a global disaster.
Spillover and viral chatter
When a disease-causing pathogen such as a flu virus is already adapted to infect a particular animal species, it may eventually evolve the ability to infect a new species, such as humans, through a process called spillover.
Spillover is a tricky enterprise. To be successful, the pathogen must have the right set of molecular “keys” compatible with the host’s molecular “locks” so it can break in and out of host cells and hijack their replication machinery. Because these locks often vary between species, the pathogen may have to try many different keys before it can infect an entirely new host species. For instance, the keys a virus successfully uses to infect chickens and ducks may not work on cattle and humans. And because new keys can be made only through random mutation, the odds of obtaining all the right ones are very slim.
Given these evolutionary challenges, it is not surprising that pathogens often get stuck partway into the spillover process. A new variant of the pathogen might be transmissible from an animal only to a person who is either more susceptible due to preexisting illness or more likely to be infected because of extended exposure to the pathogen.
Even then, the pathogen might not be able to break out of its human host and transmit to another person. This is the current situation with H5N1. For the past year, there have been many animal outbreaks in a variety of wild and domestic animals, especially among birds and cattle. But there have also been a small number of human cases, most of which have occurred among poultry and dairy workers who worked closely with large numbers of infected animals.
Pathogen transmission can be modeled in three stages. In Stage 1, the pathogen can be transmitted only between nonhuman animals. In stage 2, the pathogen can also be transmitted to humans, but it is not yet adapted for human-to-human transmission. In Stage 3, the pathogen is fully capable of human-to-human transmission.Ron Barrett, CC BY-SA
Epidemiologists call this situation viral chatter: when human infections occur only in small, sporadic outbreaks that appear like the chattering signals of coded radio communications – tiny bursts of unclear information that may add up to a very ominous message. In the case of viral chatter, the message would be a human pandemic.
Sporadic, individual cases of H5N1 among people suggest that human-to-human transmission may likely occur at some point. But even so, no one knows how long or how many steps it would take for this to happen.
Influenza viruses evolve rapidly. This is partly because two or more flu varieties can infect the same host simultaneously, allowing them to reshuffle their genetic material with one another to produce entirely new varieties.
Genetic reshuffling – aka antigenic shift – between a highly pathogenic strain of avian influenza and a strain of human influenza could create a new strain that’s even more infectious among people.Eunsun Yoo/Biomolecules & Therapeutics, CC BY-NC
These reshuffling events are more likely to occur when there is a diverse range of host species. So it is particularly concerning that H5N1 is known to have infected at least 450 different animal species. It may not be long before the viral chatter gives way to larger human epidemics.
Reshaping the trajectory
The good news is that people can take basic measures to slow down the evolution of H5N1 and potentially reduce the lethality of avian influenza should it ever become a common human infection. But governments and businesses will need to act.
People can start by taking better care of food animals. The total weight of the world’s poultry is greater than all wild bird species combined. So it is not surprising that the geography of most H5N1 outbreaks track more closely with large-scale housing and international transfers of live poultry than with the nesting and migration patterns of wild aquatic birds. Reducing these agricultural practices could help curb the evolution and spread of H5N1.
Large-scale commercial transport of domesticated animals is associated with the evolution and spread of new influenza varieties.ben/Flickr, CC BY-SA
People can also take better care of themselves. At the individual level, most people can vaccinate against the common, seasonal influenza viruses that circulate every year. At first glance this practice may not seem connected to the emergence of avian influenza. But in addition to preventing seasonal illness, vaccination against common human varieties of the virus will reduce the odds of it mixing with avian varieties and giving them the traits they need for human-to-human transmission.
At the population level, societies can work together to improve nutrition and sanitation in the world’s poorest populations. History has shown that better nutrition increases overall resistance to new infections, and better sanitation reduces how much and how often people are exposed to new pathogens. And in today’s interconnected world, the disease problems of any society will eventually spread to every society.
For more than 10,000 years, human behaviors have shaped the evolutionary trajectories of infectious diseases. Knowing this, people can reshape these trajectories for the better.Ron Barrett, Professor of Anthropology, Macalester College
This article is republished from The Conversation under a Creative Commons license. Read the original article.
One of the most powerful objects in the universe is a radio quasar – a spinning black hole spraying out highly energetic particles. Come too close to one, and you’d get sucked in by its gravitational pull, or burn up from the intense heat surrounding it. But ironically, studying black holes and their jets can give researchers insight into where potentially habitable worlds might be in the universe.
As an astrophysicist, I’ve spent two decades modeling how black holes spin, how that creates jets, and how they affect the environment of space around them.
What are black holes?
Black holes are massive, astrophysical objects that use gravity to pull surrounding objects into them. Active black holes have a pancake-shaped structure around them called an accretion disk, which contains hot, electrically charged gas.
The plasma that makes up the accretion disk comes from farther out in the galaxy. When two galaxies collide and merge, gas is funneled into the central region of that merger. Some of that gas ends up getting close to the newly merged black hole and forms the accretion disk.
Black holes and their disks can rotate, and when they do, they drag space and time with them – a concept that’s mind-boggling and very hard to grasp conceptually. But black holes are important to study because they produce enormous amounts of energy that can influence galaxies.
How energetic a black hole is depends on different factors, such as the mass of the black hole, whether it rotates rapidly, and whether lots of material falls onto it. Mergers fuel the most energetic black holes, but not all black holes are fed by gas from a merger. In spiral galaxies, for example, less gas tends to fall into the center, and the central black hole tends to have less energy.
Advertisement
One of the ways they generate energy is through what scientists call “jets” of highly energetic particles. A black hole can pull in magnetic fields and energetic particles surrounding it, and then as the black hole rotates, the magnetic fields twist into a jet that sprays out highly energetic particles.
Magnetic fields twist around the black hole as it rotates to store energy – kind of like when you pull and twist a rubber band. When you release the rubber band, it snaps forward. Similarly, the magnetic fields release their energy by producing these jets.
The accretion disk around a black hole can form a jet of hot, energetic particles surrounded by magnetic field lines. NASA, ESA, and A. Feild (STScI), CC BY
These jets can speed up or suppress the formation of stars in a galaxy, depending on how the energy is released into the black hole’s host galaxy.
Rotating black holes
Some black holes, however, rotate in a different direction than the accretion disk around them. This phenomenon is called counterrotation, and some studies my colleagues and I have conducted suggest that it’s a key feature governing the behavior of one of the most powerful kinds of objects in the universe: the radio quasar.
You can imagine the black hole as a rotating sphere, and the accretion disk as a disk with a hole in the center. The black hole sits in that center hole and rotates one way, while the accretion disk rotates the other way.
This counterrotation forces the black hole to spin down and eventually up again in the other direction, called corotation. Imagine a basketball that spins one way, but you keep tapping it to rotate in the other. The tapping will spin the basketball down. If you continue to tap in the opposite direction, it will eventually spin up and rotate in the other direction. The accretion disk does the same thing.
Since the jets tap into the black hole’s rotational energy, they are powerful only when the black hole is spinning rapidly. The change from counterrotation to corotation takes at least 100 million years. Many initially counterrotating black holes take billions of years to become rapidly spinning corotating black holes.
Advertisement
So, these black holes would produce powerful jets both early and later in their lifetimes, with an interlude in the middle where the jets are either weak or nonexistent.
When the black hole spins in counterrotation with respect to its accretion disk, that motion produces strong jets that push molecules in the surrounding gas close together, which leads to the formation of stars.
But later, in corotation, the jet tilts. This tilt makes it so that the jet impinges directly on the gas, heating it up and inhibiting star formation. In addition to that, the jet also sprays X-rays across the galaxy. Cosmic X-rays are bad for life because they can harm organic tissue.
For life to thrive, it most likely needs a planet with a habitable ecosystem, and clouds of hot gas saturated with X-rays don’t contain such planets. So, astronomers can instead look for galaxies without a tilted jet coming from its black hole. This idea is key to understanding where intelligence could potentially have emerged and matured in the universe.
Black holes as a guide
By early 2022, I had built a black hole model to use as a guide. It could point out environments with the right kind of black holes to produce the greatest number of planets without spraying them with X-rays. Life in such environments could emerge to its full potential. https://www.youtube.com/embed/b7mTVX9IE0s?wmode=transparent&start=0 Looking at black holes and their role in star formation could help scientists predict when and where life was most likely to form.
Where are such conditions present? The answer is low-density environments where galaxies had merged about 11 billion years ago.
These environments had black holes whose powerful jets enhanced the rate of star formation, but they never experienced a bout of tilted jets in corotation. In short, my model suggested that theoretically, the most advanced extraterrestrial civilization would have likely emerged on the cosmic scene far away and billions of years ago.
The science section of our news blog STM Daily News provides readers with captivating and up-to-date information on the latest scientific discoveries, breakthroughs, and innovations across various fields. We offer engaging and accessible content, ensuring that readers with different levels of scientific knowledge can stay informed. Whether it’s exploring advancements in medicine, astronomy, technology, or environmental sciences, our science section strives to shed light on the intriguing world of scientific exploration and its profound impact on our daily lives. From thought-provoking articles to informative interviews with experts in the field, STM Daily News Science offers a harmonious blend of factual reporting, analysis, and exploration, making it a go-to source for science enthusiasts and curious minds alike. https://stmdailynews.com/category/science/
Privacy & Cookies: This site uses cookies. By continuing to use this website, you agree to their use.
To find out more, including how to control cookies, see here:
Cookie Policy