Connect with us

Space and Tech

NASA Confirms DART Mission Impact Changed Asteroid’s Motion in Space

Analysis of data obtained over the past two weeks by NASA’s Double Asteroid Redirection Test (DART) investigation team shows the spacecraft’s kinetic impact with its target asteroid, Dimorphos, successfully altered the asteroid’s orbit.

Published

on

This imagery from NASA’s Hubble Space Telescope from Oct. 8, 2022, shows the debris blasted from the surface of Dimorphos 285 hours after the asteroid was intentionally impacted by NASA’s DART spacecraft on Sept. 26. The shape of that tail has changed over time. Scientists are continuing to study this material and how it moves in space, in order to better understand the asteroid.
Credits: NASA/ESA/STScI/Hubble

Analysis of data obtained over the past two weeks by NASA’s Double Asteroid Redirection Test (DART) investigation team shows the spacecraft’s kinetic impact with its target asteroid, Dimorphos, successfully altered the asteroid’s orbit. This marks humanity’s first time purposely changing the motion of a celestial object and the first full-scale demonstration of asteroid deflection technology.

“All of us have a responsibility to protect our home planet. After all, it’s the only one we have,” said NASA Administrator Bill Nelson. “This mission shows that NASA is trying to be ready for whatever the universe throws at us. NASA has proven we are serious as a defender of the planet. This is a watershed moment for planetary defense and all of humanity, demonstrating commitment from NASA’s exceptional team and partners from around the world.”

Prior to DART’s impact, it took Dimorphos 11 hours and 55 minutes to orbit its larger parent asteroid, Didymos. Since DART’s intentional collision with Dimorphos on Sept. 26, astronomers have been using telescopes on Earth to measure how much that time has changed. Now, the investigation team has confirmed the spacecraft’s impact altered Dimorphos’ orbit around Didymos by 32 minutes, shortening the 11 hour and 55-minute orbit to 11 hours and 23 minutes. This measurement has a margin of uncertainty of approximately plus or minus 2 minutes.

Before its encounter, NASA had defined a minimum successful orbit period change of Dimorphos as change of 73 seconds or more. This early data show DART surpassed this minimum benchmark by more than 25 times.  

“This result is one important step toward understanding the full effect of DART’s impact with its target asteroid” said Lori Glaze, director of NASA’s Planetary Science Division at NASA Headquarters in Washington. “As new data come in each day, astronomers will be able to better assess whether, and how, a mission like DART could be used in the future to help protect Earth from a collision with an asteroid if we ever discover one headed our way.”

The investigation team is still acquiring data with ground-based observatories around the world – as well as with radar facilities at NASA Jet Propulsion Laboratory’s Goldstone planetary radar in California and the National Science Foundation’s Green Bank Observatory in West Virginia. They are updating the period measurement with frequent observations to improve its precision.

Focus now is shifting toward measuring the efficiency of momentum transfer from DART’s roughly 14,000-mile (22,530-kilometer) per hour collision with its target. This includes further analysis of the “ejecta” – the many tons of asteroidal rock displaced and launched into space by the impact. The recoil from this blast of debris substantially enhanced DART’s push against Dimorphos – a little like a jet of air streaming out of a balloon sends the balloon in the opposite direction.

To successfully understand the effect of the recoil from the ejecta, more information on of the asteroid’s physical properties, such as the characteristics of its surface, and how strong or weak it is, is needed. These issues are still being investigated.

Advertisement

“DART has given us some fascinating data about both asteroid properties and the effectiveness of a kinetic impactor as a planetary defense technology,” said Nancy Chabot, the DART coordination lead from the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland. “The DART team is continuing to work on this rich dataset to fully understand this first planetary defense test of asteroid deflection.”

For this analysis, astronomers will continue to study imagery of Dimorphos from DART’s terminal approach and from the Light Italian CubeSat for Imaging of Asteroids (LICIACube), provided by the Italian Space Agency, to approximate the asteroid’s mass and shape. Roughly four years from now, the European Space Agency’s Hera project is also planned to conduct detailed surveys of both Dimorphos and Didymos, with a particular focus on the crater left by DART’s collision and a precise measurement of Dimorphos’ mass.

Johns Hopkins APL built and operated the DART spacecraft and manages the DART mission for NASA’s Planetary Defense Coordination Office as a project of the agency’s Planetary Missions Program Office. Telescopic facilities contributing to the observations used by the DART team to determine this result include: Goldstone, Green Bank Observatory, Swope Telescope at the Las Campanas Observatory in Chile, the Danish Telescope at the La Silla Observatory in Chile, and the Las Cumbres Observatory global telescope network facilities in Chile and in South Africa.

Neither Dimorphos nor Didymos poses any hazard to Earth before or after DART’s controlled collision with Dimorphos.

For more information about the DART mission, visit:

https://www.nasa.gov/dart

https://stmdailynews.com/category/science

Advertisement

Author


Discover more from Daily News

Subscribe to get the latest posts sent to your email.

Urbanism

Riding the Rails to the Future: Brightline West’s Game-Changing Announcement

Published

on

Brightline West
Brightline West train races through the scenic California desert, promising a swift and sustainable journey between Southern California and Las Vegas. Image Credit Brightline West

Brightline West Project

As a passionate advocate for modern transportation, I am beyond excited about the latest development in American rail: the Brightline West project, which is officially one step closer to reality with the recent signing of a $3 billion grant agreement by the Federal Railroad Administration (FRA)! This project isn’t just another rail line; it’s a historic leap forward for high-speed rail in the U.S. and a beacon of progress for public transportation enthusiasts like myself.

On September 26, 2024, this monumental agreement was finalized, marking the beginning of what many of us have dreamed about for decades—true high-speed rail connecting Las Vegas to Southern California! With trains capable of reaching speeds over 200 miles per hour, we’re talking about radically transforming how we travel between these two bustling regions.

To have a project of this magnitude come to life thanks to a strong public-private partnership is inspiring. Just look at the numbers: over 35,000 jobs are expected to be created, including 10,000 union construction jobs. This is a huge win, not only for those in the industry but also for local economies and communities, and it sets a precedent for future infrastructure efforts across the country.

Michael Reininger, the CEO of Brightline, really hit the nail on the head with his assertion that this project will “jumpstart the high-speed rail industry in America.” It’s long overdue, and finally, we are moving forward. The Brightline West project won’t just connect cities; it will embody a bold, eco-friendly approach to our transportation challenges—reducing CO2 emissions by over 400,000 tons annually and removing three million cars off the roads that currently choke the I-15.

Imagine this: a seamless, comfortable two-hour journey from Las Vegas to Rancho Cucamonga, complete with onboard amenities like food and Wi-Fi. For someone who routinely endures the endless traffic jams on the freeway, the thought of relaxing in a sleek train while taking in the stunning California desert views excites me beyond measure! No more cramped airplane seats or endless hours stuck in a car; we’ll be able to travel in style and comfort.

And it warms my heart to see the emphasis on sustainability and environmental responsibility. The fact that Brightline West will utilize zero-emission, fully electric trains positions it as the premiere green transportation choice in America. It’s initiatives like these that give me hope for our future and showcase how modern rail can lead the way in combating climate change.

Heavy construction is slated to kick off in 2025, and early groundwork is already ongoing. Crews are busy drilling geotechnical borings along the I-15, and I can practically feel the anticipation in the air! Soon enough, we’ll see new stations sprouting up, including one right in the heart of Las Vegas—a city known for its bright lights and bustling energy!

As someone who often travels for both leisure and business, I am particularly looking forward to the role this project will play as we approach the 2028 Olympic Games in Los Angeles. Brightline West will undoubtedly serve as an essential transport option for visitors and residents alike, highlighting what a modern transportation system can achieve.

Advertisement

In closing, there’s so much to be excited about! The Brightline West project calls forth a vision of the future that is connected, rapid, and environmentally conscious. It represents the culmination of years of advocacy, dreaming, and hard work. I look forward to seeing how this journey unfolds as we ride the rails toward a new era in American transportation.

Here’s to the future of rail in America! 🚄🌟

Until next time, happy rail journeys, everyone!

This post is inspired by the recent developments surrounding the Brightline West project.

https://www.brightlinewest.com

The Bridge is a section of the STM Daily News Blog meant for diversity, offering real news stories about bona fide community efforts to perpetuate a greater good. The purpose of The Bridge is to connect the divides that separate us, fostering understanding and empathy among different groups. By highlighting positive initiatives and inspirational actions, The Bridge aims to create a sense of unity and shared purpose. This section brings to light stories of individuals and organizations working tirelessly to promote inclusivity, equality, and mutual respect. Through these narratives, readers are encouraged to appreciate the richness of diverse perspectives and to participate actively in building stronger, more cohesive communities.

https://stmdailynews.com/category/the-bridge

Advertisement

Author

  • Rod Washington

    Rod: A creative force, blending words, images, and flavors. Blogger, writer, filmmaker, and photographer. Cooking enthusiast with a sci-fi vision. Passionate about his upcoming series and dedicated to TNC Network. Partnered with Rebecca Washington for a shared journey of love and art. View all posts

Want more stories 👋
“Your morning jolt of Inspiring & Interesting Stories!”

Sign up to receive awesome articles directly to your inbox.

We don’t spam! Read our privacy policy for more info.


Discover more from Daily News

Subscribe to get the latest posts sent to your email.

Continue Reading

Tech

A third of the world’s population lacks internet connectivity − airborne communications stations could change that

Published

on

Internet Connectivity
An experimental aircraft like this solar-powered airship could someday play a role in providing internet access to rural areas or disaster zones. Thales Alenia Space via Wikimedia Commons, CC BY-SA

Mohamed-Slim Alouini, King Abdullah University of Science and Technology and Mariette DiChristina, Boston University

About one-third of the global population, around 3 billion people, don’t have access to the internet or have poor connections because of infrastructure limitations, economic disparities and geographic isolation.

Today’s satellites and ground-based networks leave communications gaps where, because of geography, setting up traditional ground-based communications equipment would be too expensive.

High-altitude platform stations – telecommunications equipment positioned high in the air, on uncrewed balloons, airships, gliders and airplanes – could increase social and economic equality by filling internet connectivity gaps in ground and satellite coverage. This could allow more people to participate fully in the digital age.

One of us, Mohamed-Slim Alouini, is an electrical engineer who contributed to an experiment that showed it is possible to provide high data rates and ubiquitous 5G coverage from the stratosphere. The stratosphere is the second lowest layer of the atmosphere, ranging from 4 to 30 miles above the Earth. Commercial planes usually fly in the lower part of the stratosphere. The experiment measured signals between platform stations and users on the ground in three scenarios: a person staying in one place, a person driving a car and a person operating a boat.

My colleagues measured how strong the signal is in relation to interference and background noise levels. This is one of the measures of network reliability. The results showed that the platform stations can support high-data-rate applications such as streaming 4K resolution videos and can cover 15 to 20 times the area of standard terrestrial towers.

Early attempts by Facebook and Google to commercially deploy platform stations were unsuccessful. But recent investments, technological improvements and interest from traditional aviation companies and specialized aerospace startups may change the equation.

The goal is global connectivity, a cause that brought the platform stations idea recognition in the World Economic Forum’s 2024 Top 10 Emerging Technologies report. The international industry initiative HAPS Alliance, which includes academic partners, is also pushing toward that goal.

Advertisement

Fast, cost effective, flexible

Platform stations would be faster, more cost effective and more flexible than satellite-based systems.

Because they keep communications equipment closer to Earth than satellites, the stations could offer stronger, higher-capacity signals. This would enable real-time communications speedy enough to communicate with standard smartphones, high-resolution capabilities for imaging tasks and greater sensitivity for sensing applications. They transmit data via free-space optics, or light beams, and large-scale antenna array systems, which can send large amounts of data quickly.

Satellites can be vulnerable to eavesdropping or jamming when their orbits bring them over adversarial countries. But platform stations remain within the airspace of a single country, which reduces that risk.

High-altitude platform stations are also easier to put in place than satellites, which have high launch and maintenance costs. And the regulatory requirements and compliance procedures required to secure spots in the stratosphere are likely to be simpler than the complex international laws governing satellite orbits. Platform stations are also easier to upgrade, so improvements could be deployed more quickly.

Platform stations are also potentially less polluting than satellite mega-constellations because satellites burn up upon reentry and can release harmful metals into the atmosphere, while platform stations can be powered by clean energy sources such as solar and green hydrogen.

The key challenges to practical platform stations are increasing the amount of time they can stay aloft to months at a time, boosting green onboard power and improving reliability – especially during automated takeoff and landing through the lower turbulent layers of the atmosphere.

Diagram showing a rural area with a river running through it and airships providing communications lines. Circular insets show a mobile user, internet of things devices and satellite.
A network of interconnected high-altitude platform stations could connect mobile users and Internet of Things devices in rural areas.

Beyond satellites

Platform stations could play a critical role in emergency and humanitarian situations by supporting relief efforts when ground-based networks are damaged or inoperative.

The stations could also connect Internet of Things (IoT) devices and sensors in remote settings to better monitor the environment and manage resources.

Advertisement

In agriculture, the stations could use imaging and sensing technologies to help farmers monitor crop health, soil conditions and water resources.

Their capability for high-resolution imaging could also support navigation and mapping activities crucial for cartography, urban planning and disaster response.

The stations could also do double duty by carrying instruments for atmospheric monitoring, climate studies and remote sensing of Earth’s surface features, vegetation and oceans.

From balloons to airplanes

Platform stations could be based on different types of aircraft.

Balloons offer stable, long-duration operation at high altitudes and can be tethered or free-floating. Airships, also known as dirigibles or blimps, use lighter-than-air gases and are larger and more maneuverable than balloons. They’re especially well suited for surveillance, communications and research.

Gliders and powered aircraft can be controlled more precisely than balloons, which are sensitive to variations in wind speed. In addition, powered aircraft, which include drones and fixed-wing airplanes, can provide electricity to communication equipment, sensors and cameras.

Next-generation power

Platform stations could make use of diverse power sources, including increasingly lightweight and efficient solar cells, high-energy-density batteries, green hydrogen internal combustion engines, green hydrogen fuel cells, which are now at the testing stage, and eventually, laser beam powering from ground- or space-based solar stations.

Advertisement

The evolution of lightweight aircraft designs coupled with advancements in high-efficiency motors and propellers enable planes to fly longer and carry heavier payloads. These cutting-edge lightweight planes could lead to platform stations capable of maneuvering in the stratosphere for extended periods.

Meanwhile, improvements in stratospheric weather models and atmospheric models make it easier to predict and simulate the conditions under which the platform stations would operate.

Bridging the global digital divide

Commerical deployment of platform stations, at least for post-disaster or emergency situations, could be in place by the end of the decade. For instance, a consortium in Japan, a country with remote mountainous and island communities, has earmarked US$100 million for solar-powered, high-altitude platform stations.

Platform stations could bridge the digital divide by increasing access to critical services such as education and health care, providing new economic opportunities and improving emergency response and environmental monitoring. As advances in technology continue to drive their evolution, platform stations are set to play a crucial role in a more inclusive and resilient digital future.

Mohamed-Slim Alouini, Distinguished Professor of Electrical and Computer Engineering, King Abdullah University of Science and Technology and Mariette DiChristina, Dean and Professor of the Practice in Journalism, College of Communication, Boston University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

STM Daily News is a vibrant news blog dedicated to sharing the brighter side of human experiences. Emphasizing positive, uplifting stories, the site focuses on delivering inspiring, informative, and well-researched content. With a commitment to accurate, fair, and responsible journalism, STM Daily News aims to foster a community of readers passionate about positive change and engaged in meaningful conversations. Join the movement and explore stories that celebrate the positive impacts shaping our world.

Advertisement

https://stmdailynews.com/

Author


Discover more from Daily News

Subscribe to get the latest posts sent to your email.

Continue Reading

Space and Tech

Celebrating Pioneers of the Space Race: Highlights from NASA’s Hidden Figures Congressional Gold Medal Ceremony

Published

on

Hidden Figures Congressional Gold Medal
On Sept. 18, 2024, five Congressional Gold Medals were awarded to women who contributed to the space race, including the NASA mathematicians who helped land the first astronauts on the Moon under the agency’s Apollo Program. Credit: NASA

On Wednesday, a significant moment in history was commemorated as NASA Administrator Bill Nelson delivered poignant remarks at the Hidden Figures Congressional Gold Medal ceremony in Washington. This ceremony recognized the groundbreaking contributions of the women who played crucial roles in America’s space race, particularly the extraordinary mathematicians whose work was integral to the success of the Apollo program.

Hidden Figures Congressional Gold Medal

Nelson began his address by honoring the pioneers whose efforts laid the foundation for NASA’s achievements. He acknowledged the remarkable women of the Mercury, Gemini, and Apollo programs, specifically recognizing trailblazers like Mary Jackson, Katherine Johnson, Dorothy Vaughan, and Dr. Christine Darden. These women defied social norms and shattered barriers to help ensure that humanity took its first steps on the Moon.

The ceremony was a tribute not only to these mathematical geniuses but also to the collective efforts of the individuals and lawmakers who championed this recognition. Nelson expressed gratitude to the late Congresswoman Eddie Bernice Johnson and current lawmakers like Senator Chris Coons, Senators Lisa Murkowski, Shelley Moore Capito, and Congressman Frank Lucas, who worked diligently to make these medals a reality. Their efforts highlighted the importance of acknowledging those whose contributions often go unnoticed but are vital to the fabric of American history.

“You see, the women we honor today made it possible for Earthlings to lift beyond the bounds of Earth, and for generations of trailblazers to follow,” Nelson stated. This sentiment reflects a profound appreciation for the legacy these women have left and the inspiration they continue to provide for current and future generations of scientists, engineers, and explorers.

Nelson also spotlighted Andrea Mosie, a NASA veteran who has dedicated nearly 50 years to the agency. As the lead processor for the Apollo sample program, Mosie oversees the Moon rocks and lunar samples collected during the Apollo missions—an astonishing 842 pounds of materials that hold untold scientific value. Her presence at the ceremony served as a reminder of how the legacy of the ‘Hidden Figures’ persists in NASA’s ongoing mission and work.

As Nelson remarked, “We did not come this far only to come this far.” His words resonate with the notion that the spirit of these pioneers lives on as NASA continues to push the boundaries of exploration. With eyes set on future missions to the Moon and beyond, including Mars, the agency dreams not just of celebrating past achievements but of building upon them and inspiring new generations to reach for the stars.

The Hidden Figures Congressional Gold Medal ceremony was a powerful reminder of the courage, intelligence, and tenacity of the women who transformed the landscape of space exploration. As NASA honors these figures, it also embraces a future where diversity and inclusion are celebrated as pivotal to innovation and progress in the cosmos.

For more information about NASA missions, visit:

Advertisement

https://www.nasa.gov

The science section of our news blog STM Daily News provides readers with captivating and up-to-date information on the latest scientific discoveries, breakthroughs, and innovations across various fields. We offer engaging and accessible content, ensuring that readers with different levels of scientific knowledge can stay informed. Whether it’s exploring advancements in medicine, astronomy, technology, or environmental sciences, our science section strives to shed light on the intriguing world of scientific exploration and its profound impact on our daily lives. From thought-provoking articles to informative interviews with experts in the field, STM Daily News Science offers a harmonious blend of factual reporting, analysis, and exploration, making it a go-to source for science enthusiasts and curious minds alike. https://stmdailynews.com/category/science/

Author

  • Lynette Young

    Lynette Young is a passionate writer and blogger, sharing insights on livable cities, urbanism, and transportation. As an experienced mom, she captures the essence of community through her engaging stories. View all posts blogger/ writer


Discover more from Daily News

Subscribe to get the latest posts sent to your email.

Continue Reading

Trending