Last Updated on February 4, 2023 by Daily News StaffNASA awards 11.7 million to HBCUs to conduct data science research that will contribute to the agency’s Science Mission Directorate missions. Credits: NASA/Cory Huston
NASA is awarding $11.7 million to eight Historically Black Colleges and Universities (HBCUs) through the new Data Science Equity, Access, and Priority in Research and Education (DEAP) opportunity. These awards will enable HBCU students and faculty to conduct innovative data science research that contributes to NASA’s missions.
“We’re pleased to make progress through awards like this to intentionally build the STEM pipeline of the future, especially in communities of color,” said NASA Deputy Administrator Pam Melroy. “It’s fitting during Black History Month that we make this tangible step to build on the talent pool at HBCUs in our ongoing work to bring to the table all the talents and perspectives we’ll need to send humans to the Moon, Mars and beyond, and do amazing science throughout the solar system.”
Technology advancements in the field of data science, including the growth of artificial intelligence and machine learning, are poised to significantly impact the work of data scientists and analysts. The awarded projects have up to three years to establish institutes and partnerships to increase the number and research capacity of STEM students at HBCUs, accelerate innovation in a wide range of NASA science, technology, engineering, and mathematic research areas, and prepare the future workforce for data-intensive space-based Earth sciences.
“The increasing use of data science at NASA and beyond really drives home the need for a future workforce with data science knowledge,” said Mike Kincaid, associate administrator of NASA’s Office of STEM Engagement, which manages MUREP. “With our newest collaboration, NASA created an exciting pathway to find new talent at HBCUs.”
The agency’s Minority University Research and Education Project (MUREP) and the Science Mission Directorate collaborated on the DEAP opportunity, and selected the following institutions and their proposed projects:
Bethune-Cookman University Inc., Daytona Beach, Florida
NASA MUREP DEAP Institute of Environmental Intelligence for Advanced Space-based Earth Sciences
The project will establish a DEAP Institute focusing on machine learning-based development of a virtual constellation of satellites that will capture changing water levels, from events such as storm flooding to multi-decadal time scales, such as sea level rise. NASA tracks sea level changes and its causes from space.
Fayetteville State University, Fayetteville, North Carolina
Institute for Multi-agent Perception through Advanced Cyberphysical Technologies (IMPACT)
Advertisement
The IMPACT project will build on existing capacity and collaboration with NASA’s Jet Propulsion Laboratory in Silicon Valley, California, to engage students and faculty in using data science to address scientific questions as one of the key factors to manage NASA’s Earth mission research.
Florida A & M University, Tallahassee, Florida
Effects of Gravity on Creeping Salts and Salt Mixtures: Developing Image-based and AI-enhanced Diagnostics for Determining Chemical Compositions
This project will rely on artificial intelligence and machine learning to better understand the science of concentrated salt solutions and the formation of ring-like deposits called evaporites. Understanding the science of salt concentrations and formation of evaporites will bring new insight into identifying where water may have existed. Water is a critical source NASA researches and explores to better understand other planets’ surface geology and the potential future of lunar and Martian exploration.
Lincoln University, Jefferson City, Missouri
Using Data Science to Understand Soil, Wildfire, & Social Disparity of Climate Change and Air Pollution
This project aims to provide data science problem-solving, skill development, and professional development of minority and underserved students. Students will utilize existing state-of-the-art ML methods to develop new data analytic approaches to solve some of the core problems in Earth science research.
Morgan State University, Baltimore
Long-Term, High-Resolution Urban Aerosol Database for Research, Education and Outreach
Through innovative data analysis algorithms, including ML/AI methods, this project will produce a high-resolution, open-access, and user-friendly urban aerosol database focusing on the Baltimore-Washington area. The database will also be used in both classroom teaching and scientific outreach, accompanied by online tools and educational materials bringing new, authentic Earth science education to local schools and communities.
Advertisement
North Carolina Agricultural & Technical State University, Greensboro, North Carolina
DEAP Institute: Harnessing Data Science for Flood Monitoring and Management
Three North Carolina-based HBCUs will work together on this project developed to harness data science for flood monitoring and management.
North Carolina Central University, Durham, North Carolina
Capacity Building to Support the Machine Learning-Based Detection of Floods and other Natural Hazard Impacts in the Department of Environmental, Earth and Geospatial Sciences at North Carolina Central University
This project will create training, data resources, and opportunities to use machine learning/artificial intelligence to identify and measure the impact of flood events and other natural hazards such as earthquakes, hurricanes, drought, wildfires, and more.
Prairie View A & M University, Prairie View, Texas
DEAP Institute in Research and Education for Science Translation via Low-Resource Neural Machine Translation
This project aims to build an AI-based system that can share interactive, instantaneous, and user-relevant Earth science information, making NASA science more discoverable and accessible to a broad audience.
“NASA is tackling how to use the latest techniques in data science combined with the volumes of data produced by our missions to answer questions about our changing planet,” said Steven Crawford, senior program executive for scientific data and computing. “Working with students from HBCUs will not only engage the generation that will be most affected by these subjects but will help NASA scientists and engineers address these challenges.”
Advertisement
Administered by OSTEM, MUREP supports and invests in the research, academic, and technology capabilities of Minority Serving Institutions. For more information about NASA’s Office of STEM Engagement, visit:
Moss Landing Battery Fire Fallout: Study Finds Toxic Metals Captured in Nearby Wetlands
After the January 2025 Moss Landing battery storage fire, researchers found nickel, manganese and cobalt particles raining onto nearby wetlands. A new study shows how toxic metals settled, spread with tides and rain, and may bioaccumulate through Elkhorn Slough’s food web—raising fresh questions about battery storage safety.
A battery energy storage facility that was built inside an old power plant burned from Jan. 16-18, 2025. Mike Takaki
Moss Landing Battery Fire Fallout: Study Finds Toxic Metals Captured in Nearby Wetlands
Ivano W. Aiello, San José State University When fire broke out at the world’s largest battery energy storage facility in January 2025, its thick smoke blanketed surrounding wetlands, farms and nearby communities on the central California coast. Highways closed, residents evacuated and firefighters could do little but watch as debris and ash rained down. People living in the area reported headaches and respiratory problems, and some pets and livestock fell ill. Two days later, officials announced that the air quality met federal safety standards. But the initial all-clear decision missed something important – heavy metal fallout on the ground.A chunk of charred battery debris found near bird tracks in the mud, with a putty knife to show the size. The surrounding marshes are popular stopovers for migrating seabirds. Scientists found a thin layer of much smaller debris across the wetlands.Ivano Aiello, et al, 2025 When battery energy storage facilities burn, the makeup of the chemical fallout can be a mystery for surrounding communities. Yet, these batteries often contain metals that are toxic to humans and wildlife. The smoke plume from the fire in Vistra’s battery energy storage facility at Moss Landing released not just hazardous gases such as hydrogen fluoride but also soot and charred fragments of burned batteries that landed for miles around. I am a marine geologist who has been tracking soil changes in marshes adjacent to the Vistra facility for over a decade as part of a wetland-restoration project. In a new study published in the journal Scientific Reports, my colleagues and I were able to show through detailed before-and-after samples from the marshes what was in the battery fire’s debris and what happened to the heavy metals. The batteries’ metal fragments, often too tiny to see with the naked eye, didn’t disappear. They continue to be remobilized in the environment today.The Vistra battery energy storage facility – the large gray building in the lower left, near Monterey Bay – is surrounded by farmland and marshes. The smoke plume from the fire rained ash on the area and reached four counties.Google Earth, with data from Google, Airbus, MBARI, CSUMB, CC BY
What’s inside the batteries
Moss Landing, at the edge of Monterey Bay, has long been shaped by industry – a mix of power generation and intensive agriculture on the edge of a delicate coastal ecosystem. The Vistra battery storage facility rose on the site of an old Duke Energy and PG&E gas power plant, which was once filled with turbines and oil tanks. When Vistra announced it was converting the site into the world’s largest lithium-ion battery facility, the plan was hailed as a clean energy milestone. Phase 1 alone housed batteries with 300 megawatts of capacity, enough to power about 225,000 homes for four hours. The energy in rechargeable batteries comes from the flow of electrons released by lithium atoms in the anode moving toward the cathode. In the type of batteries at the Moss Landing facility, the cathode was rich in three metals: nickel, manganese and cobalt. These batteries are prized for their high energy density and relatively low cost, but they are also prone to thermal runaway. Lab experiments have shown that burning batteries can eject metal particles like confetti.
Metals found in wetlands matched batteries
When my team and I returned to the marsh three days after the fire, ash and burned debris covered the ground. Weeks afterward, charred fragments still clung to the vegetation. Our measurements with portable X-ray fluorescence showed sharp increases in nickel, manganese and cobalt compared with data from before the fire. As soon as we saw the numbers, we alerted officials in four counties about the risk. We estimate that about 25 metric tons (55,000 pounds) of heavy metals were deposited across roughly half a square mile (1.2 square kilometers) of wetland around Elkorn Slough, and that was only part of the area that saw fallout. To put this in perspective, the part of the Vistra battery facility that burned was hosting 300 megawatts of batteries, which equates to roughly 1,900 metric tons of cathode material. Estimates of the amount of batteries that burned range from 55% to 80%. Based on those estimates, roughly 1,000 to 1,400 metric tons of cathode material could have been carried into the smoke plume. What we found in the marsh represents about 2% of what may have been released.These contour maps show how metals from the Moss Landing battery fire settled across nearby wetlands. Each color represents how much of a metal – nickel, manganese or cobalt – was found in surface soils. Darker colors mean higher concentrations. The highest levels were measured about two weeks after the fire, then declined as rain and tides dispersed the deposits.Charlie Endris We took samples at hundreds of locations and examined millimeter-thin soil slices with a scanning electron microscope. Those slices revealed metallic particles smaller than one-tenth the width of a human hair – small enough to travel long distances and lodge deep in the lungs. The ratio of nickel to cobalt in these particles matched that of nickel, manganese and cobalt battery cathodes, clearly linking the contamination to the fire. Over the following months, we found that surface concentrations of the metals dropped sharply after major rain and tidal events, but the metals did not disappear. They were remobilized. Some migrated to the main channel of the estuary and may have been flushed out into the ocean. Some of the metals that settled in the estuary could enter the food chain in this wildlife hot spot, often populated with sea otters, harbor seals, pelicans and herons.A high-magnification image of a leaf of bristly oxtongue, seen under a scanning electron microscope, shows a tiny metal particle typically used in cathode material in lithium-ion batteries, a stark reminder that much of the fallout from the fire landed on vegetation and croplands. The image’s scale is in microns: 1 micron is 0.001 millimeters.Ivano Aiello
Making battery storage safer as it expands
The fire at Moss Landing and its fallout hold lessons for other communities, first responders and the design of future lithium-ion battery systems, which are proliferating as utilities seek to balance renewable power and demand peaks. When fires break out, emergency responders need to know what they’re dealing with. A California law passed after the fire helps address this by requiring strengthening containment and monitoring at large battery installations and meetings with local fire officials before new facilities open.How lithium-ion batteries work, and why they can be prone to thermal runaway. Newer lithium-ion batteries that use iron phosphate cathodes are also considered safer from fire risk. These are becoming more common for utility-scale energy storage than batteries with nickel, manganese and cobalt, though they store less energy. How soil is tested is also important. At Moss Landing, some of the government’s sampling turned up low concentrations of the metals, likely because the samples came from broad, mixed layers that diluted the concentration of metals rather than the thin surface deposits where contaminants settled.
Continuing risks to marine life
Metals from the Moss Landing battery fire still linger in the region’s sediments and food webs. These metals bioaccumulate, building up through the food chain: The metals in marsh soils can be taken up by worms and small invertebrates, which are eaten by fish, crabs or shorebirds, and eventually by top predators such as sea otters or harbor seals. Our research group is now tracking the bioaccumulation in Elkhorn Slough’s shellfish, crabs and fish. Because uptake varies among species and seasons, the effect of the metals on ecosystems will take months or years to emerge. Ivano W. Aiello, Professor of Marine Geology, San José State University This article is republished from The Conversation under a Creative Commons license. Read the original article.
NASA Astronaut Jonny Kim to Share Insights from Eight-Month Space Station Mission
NASA astronaut Jonny Kim will discuss his eight-month International Space Station mission during a live news conference on Dec. 19. Discover the science, technology, and teamwork behind his groundbreaking journey, streaming live via NASA and covered by STM Daily News.
NASA astronaut Jonny Kim poses inside the International Space Station’s cupola as it orbits 265 miles above the Indian Ocean near Madagascar. Credit: NASA
NASA Astronaut Jonny Kim Recaps Eight-Month International Space Station Mission in Live News Conference
Space exploration continues to push the boundaries of science and human achievement. This month, NASA astronaut Jonny Kim returns from an extraordinary eight-month mission aboard the International Space Station (ISS)—and he’s ready to share his story.
Event Details:
What: Jonny Kim’s ISS Mission Recap News Conference
Returning to Earth on Dec. 9 with Roscosmos cosmonauts Sergey Ryzhikov and Alexey Zubritsky, Kim logged an impressive 245 days in space as a flight engineer for Expeditions 72/73. The crew completed a staggering 3,920 orbits—covering nearly 104 million miles—and managed the arrival and departure of multiple spacecraft.
But it’s the science behind the mission that stands out:
Advancing Medicine and Technology
Bioprinted Tissues in Microgravity: Kim helped study the behavior of bioprinted tissues containing blood vessels, a step forward in space-based tissue production that could one day revolutionize patient care on Earth.
Remote Robotics Operations: Through the Surface Avatar study, Kim tested the remote command of multiple robots in space—work that could lead to more advanced robotic assistants for future missions to the Moon, Mars, and beyond.
Nanomaterials for Medicine: Kim contributed to the development of DNA-mimicking nanomaterials, opening doors for improved drug delivery and regenerative medicine both in space and at home.
How to Watch and Participate
NASA invites the public and media to join the news conference. For those interested in direct participation, media accreditation is required (details available via NASA’s newsroom). For everyone else, the event will be streamed live—no registration needed.
Learn more about International Space Station research and ongoing missions:NASA’s ISS Page
Why This Matters
Jonny Kim’s journey is a testament to the power of international collaboration and the relentless pursuit of knowledge. His work aboard the ISS is already shaping the future of medicine, robotics, and exploration—impacting lives both in space and right here on Earth.
Stay tuned to STM Daily News for more updates on science, innovation, and the stories that connect our community to the world beyond.
Want more space and science coverage? Visit STM Daily News for the latest updates, features, and community stories.
A gustnado east of Limon, Colorado. Image Credit: Jessica Kortekaas
Severe weather can produce dramatic sights—but not every spinning column of air is a tornado.
A [gustnado](chatgpt://generic-entity?number=0) is a brief, ground-level swirl of rotating air that forms along a thunderstorm’s gust front. Gustnadoes often appear suddenly, kicking up dust or debris, which can make them look more dangerous than they actually are.
Unlike tornadoes, gustnadoes do not connect to a storm’s rotating updraft. Because of this, they are usually weaker, short-lived, and difficult to detect on weather radar.
Gustnadoes typically last only seconds to a few minutes and are most commonly spotted in dry regions, where loose soil makes their rotation visible.
The takeaway: If it’s spinning near the ground ahead of a storm, it may look intense—but it’s not always a tornado.
Further Reading
Learn the differences between tornadoes, dust devils, and other rotating weather phenomena in our STM Daily News Knowledge Series.
Rod: A creative force, blending words, images, and flavors. Blogger, writer, filmmaker, and photographer. Cooking enthusiast with a sci-fi vision. Passionate about his upcoming series and dedicated to TNC Network. Partnered with Rebecca Washington for a shared journey of love and art.